Способ нанесения проводящего прозрачного покрытия

 

Изобретение относится к области технологических процессов, связанных с нанесением оптических покрытий, в частности к магнетронному распылению электропроводящих покрытий в среде реактивных газов, и может быть использовано для получения прозрачных электропроводящих слоев на поверхности оптических деталей. Предложенный способ включает реактивное магнетронное распыление и осаждение металлического индия с добавлением олова в атмосфере газовой смеси инертного газа и кислорода, при этом осаждение ведут при соотношении напыляемых компонентов в мишени: индий - 95%, олово - 5% и при отношении парциальных давлений кислорода и аргона в газовой смеси, составляющем 1:6. В процессе реактивного магнетронного распыления толщину покрытия контролируют спектрофотометром до достижения максимума пропускания в нужной длине волны света. Техническим результатом изобретения является разработка способа, позволяющего получить высококачественное покрытие, оптическая прозрачность которого в видимом диапазоне составляет 90%, удельное поверхностное сопротивление в зависимости от толщины нанесенного покрытия составляет 30-75 Ом/кв при однородности 3-7 Ом/кв.

Предлагаемое изобретение относится к области технологических процессов, связанных с нанесением оптических покрытий, в частности к магнетронному распылению электропроводящих покрытий в среде реактивных газов, и может быть использовано для получения прозрачных электропроводящих слоев на поверхности оптических деталей.

Известны способы получения проводящих прозрачных покрытий из оксида индия [1] и (JP, заявка 63-54788, кл. С 23 С 14/08).

Недостатками первого из них являются: требуется предварительное охлаждение подложки, низкая скорость нанесения покрытия, сложный состав атмосферы в камере. Основным недостатком второго способа является необходимость предварительного нагрева стеклянной подложки.

Наиболее близким по технической сущности к заявляемому изобретению является способ, описанный в [2]. Особенностью данного способа является бомбардировка ионами с кинетической энергией порядка 50 эВ поверхностных слоев материала покрытия в процессе нанесения. Осаждение покрытия проводят путем реактивного магнетронного испарения металлической мишени, состоящей из индия с добавлением олова. У этого способа основным недостатком является необходимость ионной стимуляции в процессе напыления, что требует дополнительного оборудования и усложняет технический процесс, кроме того, контроль толщины не прямой, а осуществляется по времени напыления, что приводит к большому разбросу значений пропускания готового покрытия.

Задача, на решение которой направлено данное изобретение, заключается в разработке способа, позволяющего получать проводящее прозрачное покрытие из оксида индия с добавлением оксида олова без предварительной термической подготовки подложки, заключающейся в ее нагреве или охлаждении, без последующего высокотемпературного отжига подложки; без использования ионной стимуляции, с прямым контролем толщины покрытия в процессе напыления.

В качестве примера реализации предлагаемого решения можно рассматривать произведенное авторами напыление прозрачных электродов электрооптического модулятора на основе кристаллов калия дигидрофосфата (KDP) и дейтерированного калия дигидрофосфата (DKDP). При этом поставленная задача решается тем, что способ получения проводящих прозрачных покрытий, включающий реактивное магнетронное распыление и осаждение металлического индия с добавлением олова в атмосфере газовой смеси инертного газа и кислорода, осуществляют при отсутствии ионной стимуляции с жестким удержанием параметров газовой смеси и давления в узком коридоре значений. Отношение парциальных давлений аргона и кислорода в газовой смеси задают 6:1 при составе мишени: индий 95%, олово 5%, а в процессе реактивного магнитронного распыления толщину покрытия контролируют по спектрофотометру до достижения максимума пропускания. Эти признаки являются существенными и позволяют получать высокую повторяемость не только электрических, но и оптических характеристик покрытий.

Поскольку предлагаемый способ не требует ионной стимуляции, технологический процесс упрощается, не требуется сложное и дорогое оборудование. Напыление происходит при общем давлении в камере 6-7·10-3 мбар, при этом напряжение разряда магнетрона 500-600 В. Время нанесения покрытия 4-8 мин, толщину покрытия можно варьировать в диапазоне 0,01-0,05 мкм.

Напыление проводилось также на следующие подложки: оптическое стекло марки К8, кристаллы KDP и DKDP размером 50·50 мм, толщиной до 5 мм. В результате получены опытные образцы, имеющие высококачественную структуру покрытия, оптически прозрачную - в видимом диапазоне прозрачность составляет 90% (однородность пропускания по полю не хуже 1%). Удельное поверхностное сопротивлением в зависимости от толщины составляет 30-75 Ом/кв при однородности 3-7 Ом/кв.

Источники информации

1. Замоздик Т.В., Мельченко П.И. Авторское свидетельство №950798 "Способ получения проводящих прозрачных покрытий из оксида индия", БИ №30, 1982.

2. Титомир А.К., Сушков В.Я. Духопельников Д.В. Патент РФ №2112076 "Способ нанесения проводящего прозрачного покрытия", БИ №15, 1998.

Формула изобретения

Способ нанесения проводящего прозрачного покрытия, включающий реактивное магнетронное распыление и осаждение металлического индия с добавлением олова в атмосфере газовой смеси инертного газа и кислорода, отличающийся тем, что осаждение ведут при соотношении напыляемых компонентов в мишени: индий 95%, олово 5% и при отношении парциальных давлений кислорода и аргона в газовой смеси, составляющем 1:6, при этом в процессе реактивного магнетронного распыления толщину покрытия контролируют спектрофотометром до достижения максимума пропускания в нужной длине волны света.



 

Похожие патенты:

Изобретение относится к устройствам для нанесения вакуумным способом на подшипники скольжения покрытия, состоящего из, по меньшей мере, одного промежуточного слоя и, по меньшей мере, одного антифрикционного слоя

Изобретение относится к плазменной технике и предназначено для нанесения пленок из металлов и их соединений в различных отраслях машиностроения

Магнетрон // 2218450
Изобретение относится к области нанесения покрытий, различных по назначению и составу, а именно к устройствам ионно-плазменного распыления в скрещенных магнитном и электрических полях, и может быть использовано в машиностроении, оптике, электронной, электротехнической, медицинской и других отраслях промышленности

Изобретение относится к напылительной технике и технологии, а именно к нанесению пленок путем магнетронного распыления в вакууме и используется для получения углеродных нанотрубок

Изобретение относится к изготовлению покрытий из металлов на изделиях различного назначения и может быть использовано в электротехнической, радиотехнической, ювелирной и других отраслях промышленности
Изобретение относится к изготовлению покрытий из металлов на изделиях различного назначения и может быть использовано в электротехнической, радиотехнической, ювелирной и других отраслях промышленности

Изобретение относится к области аппаратурного оформления технологий нанесения покрытий, различных по назначению и составу, и может быть использовано в машиностроении, электронной, электротехнической, медицинской и других отраслях промышленности

Изобретение относится к области нанесения покрытий и может быть использовано в машиностроении

Изобретение относится к конструктивным элементам для каналов горячих газов, в частности лопаткам турбин, жарозащитным экранам и т.д., содержащим металлическое основание из сверхсплава на основе никеля, кобальта или железа

Изобретение относится к ядерной технике и может быть использовано для выравнивания поверхности оксидных материалов

Изобретение относится к ядерной технике и может быть использовано для выравнивания поверхности оксидных материалов

Изобретение относится к области отражающих покрытий, в том числе и теплозащитных, и может быть использовано для защиты человека в условиях его пребывания в обстановке высокого теплового и радиационного воздействия

Изобретение относится к области защиты от термической коррозии изделий, применяемых в ядерной энергетике, в частности труб технологических каналов и оболочек тепловыделяющих элементов, и направлено на повышение коррозионной стойкости

Изобретение относится к детали, в частности к лопатке газовой турбины, содержащей основную часть и расположенный на ней теплоизоляционный слой, который имеет столбчатую структуру с керамическими столбиками, которые в большинстве направлены в основном перпендикулярно поверхности основной части

Изобретение относится к технике нанесения покрытий в вакууме, а именно к устройствам ионно-плазменного распыления магнетронного типа, и может быть использовано для нанесения пленок, применяемых в изделиях электронной, приборостроительной, оптической и других отраслях промышленности, в частности, в качестве оптических покрытий и чувствительных слоев газовых сенсоров

Изобретение относится к области изготовления тонкопленочных покрытий, в частности к вакуумному нанесению покрытий с помощью магнетронного распыления на постоянном токе на прозрачные материалы, например стекло или полимерные пленки
Изобретение относится к изготовлению приборов оптоэлектроники и может быть использовано при изготовлении дисплеев, светоизлучающих диодов и затворов полупроводниковых структур типа металл-диэлектрик-полупроводник

Изобретение относится к получению защитных электропроводных и оптически прозрачных покрытий для электроники, транспорта, а также для реализации энергосберегающих технологий в строительстве
Наверх