Многоступенчатый испаритель мгновенного вскипания

Авторы патента:

B01D1/26 - Разделение (разделение твердых частиц мокрыми способами B03B,B03D; с помощью пневматических отсадочных машин или концентрационных столов B03B, другими сухими способами B07; магнитное или электростатическое отделение твердых материалов от твердых материалов или от текучей среды, разделение с помощью электрического поля, образованного высоким напряжением B03C; центрифуги, циклоны B04; прессы как таковые для выжимания жидкостей из веществ B30B 9/02; обработка воды C02F, например умягчение ионообменом C02F 1/42; расположение или установка фильтров в устройствах для кондиционирования, увлажнения воздуха, вентиляции F24F 13/28)

 

Изобретение относится к области теплоэнергетики и может быть использовано в технологии получения пресной воды из морской (солоноватой) воды. Испаритель мгновенного вскипания содержит корпус, вертикальную разделительную перегородку с окном для прохода пара, плотно соединенную с корпусом и разделяющую испаритель на камеры расширения и конденсации, патрубки для подвода и отвода испаряемой воды и дистиллята. Камеры конденсации и расширения испарителя снабжены самостоятельными днищами по числу камер и плотно соединены с разделительной перегородкой и корпусом испарителя. Сторона днища, противоположная прилегающей к разделительной перегородке, выступает за пределы корпуса и плотно соединена с последним с внешней стороны. Разделительная перегородка дополнительно снабжена по числу камер расширения окнами для прохода пара, а в днищах выполнены цилиндрические патрубки для прохода жидкости. Это позволит повысить производительность испарителя, повысить надежность его работы за счет исключения перетока воды повышенной минерализации в дистиллят и предотвращения контакта агрессивной среды со сварочными соединениями на корпусе. 2 з.п.ф-лы, 2 ил.

Изобретение относится к области теплоэнергетики и может быть использовано в технологии получения пресной воды из солоноватой или морской воды.

Известны испарители мгновенного вскипания (патент №2218972, полезная модель №31337).

Однако в этих конструкциях не исключено вредные агрессивные воздействия среды на сварочные соединения, что приводит к разрушению сварных соединений, нарушению плотности системы.

Наиболее близким по технической сущности и достигаемому техническому результату к заявленному техническому решению является конструкция, выполненная по а.с. 1733032, содержащая корпус, разделительную перегородку, с окнами для прохода пара, разделяющую корпус на камеру расширения и конденсации, патрубки для подвода и отвода испаряемой воды, патрубки для отвода дистиллята.

В этой конструкции разделительная перегородка приварена к корпусу с наружной стороны, что исключает контакт агрессивной среды (выпариваемая высоконцентрированная вода) со сварочными швами.

Однако этот испаритель, принятый за прототип, имеет и недостатки.

Из-за одноступенчатого (однократного) вскипания перегретой воды производительность известного испарителя, принятого за прототип, ограничена. Поясним это положение примером. На фиг.1а изображена принципиальная тепловая схема известного испарителя, где 1 - камера расширения, 2 - камера конденсации, 3 - подогреватель испаряемой воды, где в качестве теплоносителя используется сторонний пар. Принимаем расход и температуру охлаждающей жидкости на входе в трубки камеры конденсации соответственно равными 100 м3/ч и 50° С, а температуру испаряемой воды после подогревателя 3 перед камерой расширения равной 90° С. Пренебрегая недогревом (для удобства расчетов) в конденсаторе камеры конденсации можно получить следующую максимальную производительность испарителя:

где Ди - расход испаряемой воды, т/ч;

t0 - температура испаряемой воды на входе в камеру расширения, ° C;

tp - температура испаряемой воды на выходе из расширителя, ° С;

ср - теплоемкость воды, 1 ккал/м2· ° С;

r - скрытая теплота парообразования, ккал/кг.

Температура tр=75° С в данном случае обеспечивает максимальное генерирование пара, т.к. в этом случае обеспечивает максимально возможный перепад t0-tp=25° C, при котором обеспечивается максимально возможный подогрев охлаждающей воды в конденсаторе с 50 до 75° С (на 25° С).

Любые изменения tp в сторону уменьшения в известной установке невозможны, а, следовательно, и не возможно увеличение производительности установки при постоянных Д и, Дохл, t0, tохл, из-за невозможности сконденсировать пар в конденсаторе. Поясним это положение. Например, допустим (гипотетически) удалось уменьшить tp до 60° С в известном испарителе.

Тогда при расширении испаряемой воды по вышеприведенной формуле можно получить 6 т/ч, но в конденсаторе возможен нагрев воды всего на 10° С, что по условиям работы конденсатора позволит сконденсировать всего

где Дохл - расход охлаждающей воды, т/ч.

Приведенный пример показывает, что в известном испарителе повысить производительность не предоставляется возможным.

Заявляемое изобретение направлено на решение задачи, связанной с повышением эффективности работы известного испарителя мгновенного вскипания.

Эта задача решается в известном испарителе, принятом за прототип, в котором камера конденсации и камера расширения испарителя снабжены самостоятельными днищами по числу образовавшихся камер расширения, причем каждое днище плотно соединено с одной стороны с разделительной перегородкой с другой с корпусом испарителя, а разделительная перегородка дополнительно снабжена окнами для прохода пара по числу камер расширения. Каждое днище выступает одной стороной за пределы корпуса и соединено с последним с внешней стороны, причем днище каждой камеры расширения снабжено цилиндрическими патрубками для перетока испаряемой жидкости.

Требуемый технический результат по повышению производительности и надежности работы испарителя достигается за счет исполнения испарителя многоступенчатым и исполнения соединении указанным выше способом, когда с одной стороны исключается контакт выпариваемой воды со сварочными соединениями днища к корпусу, а с другой стороны соединение днища с разделительной перегородкой и исполнением их самостоятельным исключает перетоки жидкости между камерами, например, в следствии неплотности сварных соединений, устранение которых в условиях действующего испарителя представляет огромные трудности.

Опытными исследования установлено, что исполнение испарителя таким образом позволило обеспечить длительную живучесть испарителя, обеспечивая его прочность и исключить перетоки минерализованной концентрированной воды в дистиллят, качество которого по электропроводности не превышает 0,6 мкСм/см, а по содержанию иона Na+<10 мкг/кг.

Повышение производительности установки поясним примером. На фиг.1б представлен предлагаемый испаритель в трехступенчатом варианте. При исходных параметрах, сходных с предыдущем вариантом (Диохл=100 т/ч, t0=90° С, tохл=50° С), испаряемая вода расширяется в трех камерах, в первой с 90 до 80° С, второй с 80 до 70 в третьей с 70° С до 60° С. Производительность испарителя в этом случае равна

По сравнению с известным испарителем производительность предлагаемой увеличилась на 20%, а расход греющего пара в предлагаемом испарителе уменьшился в 1,5 раза, т.к. подогрев воды после конденсаторов осуществляется на 10° С, а не на 15° С как в известной установке (расход испаряемой воды напоминаем в обоих случаях одинаков и равен 100 т/ч).

Новизна заявляемого изобретения подтверждается наличием отличительных признаков по сравнению с прототипом.

Перечень фигур чертежей.

Фиг 1 - пример работы аналога (а) и предлагаемой установки (б);

фиг 2 - многоступенчатый испаритель мгновенного вскипания.

Многоступенчатый испаритель мгновенного вскипания состоит из корпуса 1, разделительной перегородки 2, выступающей за пределы корпуса и к которой приварен последний с внешней стороны, камеры конденсации 3, камеры расширения 4, окон 5, выполненных в разделительной перегородке 2, днищ 6 и 9, причем одна сторона каждого днища приварена к разделительной перегородке, другая к корпусу с внешней стороны, цилиндрических патрубков 8, трубок 7, внутри которых течет охлаждающая вода, патрубка 10 для отвода испаряемой воды и патрубка 11 для отвода дистиллята.

Многоступенчатый испаритель мгновенного вскипания работает следующим образом. Перегретая вода через патрубок 12 поступает в расширитель 4, где вскипает. Образующийся пар через окно 5 поступает в камеру 3, где конденсируется на трубках 7. Дистиллят из камеры конденсации через гидрозатворы (на фиг. 2 не показаны) перетекает в следующую камеру, а из последней камеры через патрубок 11 отводится потребителю. Неиспарившаяся вода из вышестоящей камеры расширения через цилиндрические патрубки 8, расположенные на днище камер, перетекает в следующую нижестоящую камеру, где процесс повторяется аналогично первой. Из последней камеры расширения через патрубок 10 вода отводится из испарителя.

Использование предлагаемого изобретение по сравнению с прототипом позволит повысить надежность работы испарителя и повысить его производительность.

Формула изобретения

1. Многоступенчатый испаритель мгновенного вскипания, содержащий корпус, вертикальную разделительную перегородку с окнами для прохода пара, плотно соединенную с корпусом и разделяющую испаритель на камеры расширения и конденсации, патрубки для отвода и подвода испаряемой воды, дистиллята, отличающийся тем, что камеры конденсации и камеры расширения снабжены самостоятельными днищами по числу камер, причем каждое днище плотно соединено с одной стороны с разделительной перегородкой, с другой - с корпусом испарителя, а разделительная перегородка дополнительно снабжена окнами для прохода пара по числу камер расширения.

2. Многоступенчатый испаритель мгновенного вскипания по п.1, отличающийся тем, что одна сторона днища, противоположная разделительной перегородке, в каждой камере расширения и конденсации выступает за пределы корпуса и плотно соединена с последним с внешней стороны.

3. Многоступенчатый испаритель мгновенного вскипания по п.1, отличающийся тем, что днище каждой камеры расширения снабжено цилиндрическими патрубками для перетока испаряемой воды.

РИСУНКИ

MM4A Досрочное прекращение действия патента из-за неуплаты в установленный срок пошлины заподдержание патента в силе

Дата прекращения действия патента: 21.01.2010

Дата публикации: 20.06.2011




 

Похожие патенты:

Изобретение относится к способу удаления нитратов из воды, которые содержатся в ней в качестве загрязняющих агентов

Изобретение относится к области водоподготовки, а более конкретно, - получения питьевой воды с высокими органолептическими показателями в условиях домашнего хозяйства, и может быть использовано для глубокой очистки водопроводной воды в бытовых условиях

Изобретение относится к области водоподготовки, а более конкретно, - получения питьевой воды с высокими органолептическими показателями в условиях домашнего хозяйства, и может быть использовано для глубокой очистки водопроводной воды в бытовых условиях

Изобретение относится к способам обработки воды и водных растворов в процессах для одновременного нагрева, умягчения, обеззараживания и очистки от механических примесей в химической, пищевой, фармацевтической, нефтегазодобывающей и других отраслях промышленности, а также в жилищно-коммунальном хозяйстве и быту

Изобретение относится к способам обработки воды и водных растворов в процессах для одновременного нагрева, умягчения, обеззараживания и очистки от механических примесей в химической, пищевой, фармацевтической, нефтегазодобывающей и других отраслях промышленности, а также в жилищно-коммунальном хозяйстве и быту

Изобретение относится к промышленному разливу питьевых минеральных вод в бутылки

Изобретение относится к промышленному разливу питьевых минеральных вод в бутылки

Изобретение относится к промышленному разливу питьевых минеральных вод в бутылки

Изобретение относится к промышленному разливу питьевых минеральных вод в бутылки

Изобретение относится к способам утилизации продувочной воды оборотной системы и может быть использовано на тепловых электростанциях (ТЭС)

Изобретение относится к области теплоэнергетики и может быть использовано, например, в испарителях мгновенного вскипания

Изобретение относится к области теплоэнергетики и может быть использовано, например, в испарителях мгновенного вскипания

Изобретение относится к перерабатывающей промышленности и касается конструкции тепломассообменного аппарата (ТМА) для разделения многокомпонентного сырья на фракции

Изобретение относится к перегонке растворов и может быть использовано для разделения на чистые фазы, растворов всех типов: жидкостей смешивающихся в любых отношениях, т

Изобретение относится к процессам и аппаратам химической технологии и может быть использовано в химико-технологических и теплоэнергетических процессах, в частности, в котельных теплоэлектростанций

Изобретение относится к области газофазной полимеризации
Наверх