Способ динамического регулирования охлаждения слитка на установке непрерывной разливки металла

 

Изобретение относится к технологии непрерывной разливки металла. При динамическом регулировании охлаждения слитка на установке непрерывной разливки металла регулируют расходы охладителя по секциям зоны вторичного охлаждения в зависимости от изменения скорости вытягивания слитка, перегрева жидкого металла, теплоотвода от слитка в кристаллизаторе и разогрева машины от холодного состояния в пусковом режиме. Расход охладителя в каждой секции зоны вторичного охлаждения изменяют по зависимости , где k1(T, ) - коэффициент, учитывающий изменение расхода охладителя в зависимости от перегрева жидкого металла в промковше Т; k2(q, ) - коэффициент, учитывающий изменение расхода охладителя в зависимости от изменения теплоотвода в кристаллизаторе q; k3() - коэффициент, учитывающий изменение расхода охладителя во время разогрева машины в пусковом режиме. Изобретение позволяет уменьшить градиент температуры в корочке слитка по всей длине технологического канала. 4 ил.

Изобретение относится к металлургии, а именно к технологии непрерывной разливки металла.

Известен способ динамического регулирования охлаждения слитка на установке непрерывной разливки металла (см. патент РФ №2185927 от 18.10.1999 г., МКИ7 В 22 D 11/22, опубл. 27.07.2002 г. Бюл. №21 [1]), включающий регулирование расхода охладителя по секциям зоны вторичного охлаждения в зависимости от изменения скорости вытягивания слитка, поддерживающий постоянной температуру поверхности в каждой точке зоны вторичного охлаждения независимо от скорости вытягивания, путем регулирования интенсивности охлаждения в каждой секции зоны вторичного охлаждения по зависимости

за время регулирования расхода охладителя в каждой секции зоны вторичного охлаждения

причем коэффициент теплоотдачи рассчитывается для каждой секции в реальном времени, а каждую секцию включают при значении коэффициента теплоотдачи от слитка i()>50 Вт/м2 K и отключают при i()<50 Вт/м2 K,

где - интенсивность охлаждения по секциям i;

i() - коэффициент теплоотдачи в текущее время переходного процесса () в i-й секции охлаждения;

1i, 2i - коэффициенты теплоотдачи вначале 1i и в конце 2i переходного процесса в i-й секции;

при этом k=1,5 при снижении скорости вытягивания слитка от 1 до 2;

k=1,25 при повышении скорости вытягивания слитка от 1 до 2;

- безразмерное время;

Тi= 2i- 1i - время регулирования в i-й секции;

L i - расстояние от мениска металла в кристаллизаторе до середины i-й секции;

при увеличении скорости n=1, при уменьшении скорости n=1...0,5 в зависимости от отливаемой марки стали. (Способ принят за прототип).

Основным недостатком известного способа является тот факт, что он осуществляет регулирование расхода охладителя только в зависимости от изменения скорости вытягивания слитка и не учитывает такие существенные факторы, как перегрев жидкого металла в промковше, изменение теплоотвода в кристаллизаторе и фактора разогрева машины от холодного состояния в пусковом режиме, влияющие на тепловое состояние слитка и соответственно на его качество.

Заявляемое изобретение направлено на решение задачи предотвращения нарушений технологического процесса, т.е. предотвращения колебаний температуры поверхности слитка, которые возникают в результате изменения температуры перегрева жидкого металла, именения теплоотвода в кристаллизаторе и, кроме того, учитывает фактор разогрева машины от холодного состояния в пусковом режиме.

Технический результат при осуществлении изобретения выражается в поддержании температуры поверхности слитка по определенной зависимости по всей длине технологического канала независимо от колебаний температуры перегрева жидкого металла, колебаний теплоотвода от слитка в кристаллизаторе и фактора разогрева машины от холодного состояния в пусковом режиме. Это приводит к уменьшению градиента температуры в корочке слитка по всей длине технологического канала и, соответственно, к снижению термических напряжений, а значит к уменьшению трещинообразования.

Указанный технический результат достигается тем, что в предлагаемом способе динамического регулирования охлаждения слитка на установке непрерывной разливки металла, включающем регулирование расхода охладителя по секциям зоны вторичного охлаждения в зависимости от изменения скорости вытягивания слитка, перегрева жидкого металла, теплоотвода от слитка в кристаллизаторе и разогрева машины от холодного состояния в пусковом режиме, согласно изобретению расход охладителя в каждой секции зоны вторичного охлаждения изменяют по зависимости

где ki(, ) - коэффициент, учитывающий изменение расхода охладителя в зависимости от перегрева жидкого металла в промковше T;

k2 (q, ) - коэффициент, учитывающий изменение расхода охладителя в зависимости от изменения теплоотвода в кристаллизаторе q;

k3() - коэффициент, учитывающий изменение расхода охладителя во время разогрева машины в пусковом режиме.

Предлагаемый способ применим в пределах изменения температуры перегрева жидкого металла (10T80)°С и изменения теплоотвода в кристаллизаторе (qq0,5q) Bт/м2.

Преимущество предлагаемого способа по сравнению с прототипом заключается в том, что он кроме изменения скорости учитывает еще три фактора, которые существенно влияют на тепловое состояние слитка. Учет влияния изменения температуры перегрева жидкого металла, изменения теплоотвода в кристаллизаторе и фактора разогрева машины от холодного состояния в пусковом режиме на расход охладителя приводит к уменьшению градиента температуры по толщине корочки и, соответственно, существенно уменьшаются термические напряжения в корочке, при этом улучшается качество поверхности слитка.

Изобретение иллюстрируется чертежами. На фиг.1 изображено устройство для реализации способа. В процессе разливки металл из промковша 1 поступает в кристаллизатор 2, из кристаллизатора вытягивают слиток в двухфазном состоянии 3. Устройство рассматривается применительно к трехсекционной зоне вторичного охлаждения (позиции 4, 5, 6). Изобретение может быть использовано для установки непрерывной разливки металла с любым количеством секций вторичного охлаждения. Устройство содержит регуляторы 7, которые загружаются данными из компьютера 8 и управляют регулирующими клапанами 9. На компьютер сигнал по изменению скорости поступает от измерителя 10, сигнал по расходу воды на кристаллизатор поступает от измерителя 12, при этом измеряется температура воды на входе в кристаллизатор и на выходе из него 13, что позволяет рассчитывать теплоотвод в реальном времени. Информация о перегреве жидкого металла поступает на компьютер от измерителя 14. Контроль температуры поверхности слитка может осуществляться с помощью температурных датчиков 11.

Реализация способа управления осуществляется следующим образом.

1) Расход охладителя Мi() определяется при помощи изменяющейся во времени интенсивности охлаждения слитка и зависит от переменной скорости вытягивания .

2) Коэффициент k1(T, ), учитывающий изменение расхода охладителя в зависимости от перегрева жидкого металла Т, определяется с помощью математического моделирования процесса затвердевания слитка и имеет в результате вид набора полиномов по группам марок сталей. На фиг.2 показан пример характера изменения коэффициента.

3) Коэффициент k2(q, ), учитывающий изменение расхода охладителя в зависимости от теплоотвода в кристаллизаторе q, определяется также с помощью математического моделирования процесса затвердевания слитка и имеет в результате вид набора полиномов по группам марок сталей. На фиг.3 показан пример характера изменения коэффициента.

4) Коэффициент k3(), учитывающий изменение расхода охладителя во время разогрева машины, определяется экспериментально. На фиг.4 показан пример характера изменения коэффициента.

Разработанная в соответствии с предложенным техническим решением программа управления динамическим регулированием охлаждения слитка загружается в управляющий компьютер 8 и ведет управление расходом охладителя индивидуально в каждой секции зоны вторичного охлаждения. При изменении скорости разливки, т.е. при наступлении нестационарного режима, что определяется по сигналу измерителя 10, изменяется значение Mi(). Сигнал по перегреву жидкого металла поступает от измерителя 14 и изменяет значение коэффициента ki(Т, ). Измерителями 12 и 13 фиксируются температура и расход охлаждающей кристаллизатор воды, что позволяет рассчитывать изменение теплоотвода кристаллизатором от слитка и изменять значение коэффициента k 2(q, ). Расходы охладителя на каждую секцию зоны вторичного охлаждения рассчитываются согласно формуле изобретения в реальном времени благодаря использованию обобщенных функций (полиномов). Затем сигнал поступает на регулятор 7, который управляет регулирующим клапаном 9. В результате на каждой секции зоны вторичного охлаждения будет установлен рассчитанный расход охладителя. Эта технология не требует использования специальных мощных и быстродействующих компьютеров, что является одним из преимуществ предлагаемого способа.

Измерение всех параметров производится через довольно короткие промежутки времени =1-5 с, что приводит к аппроксимации их изменения и производится регулирование в реальном времени.

Как показали результаты математического моделирования и натурные испытания, температура поверхности слитка в измеряемых точках в зоне вторичного охлаждения остается в определенной зависимости по длине технологического канала при изменении скорости разливки в диапазоне 0,2-1 от установившейся номинальной.

В результате динамического регулирования охлаждения слитка на установке непрерывной разливки металла улучшается качество поверхности слитка и увеличивается выход годного за счет снижения брака, имевшего место ранее при технологических снижениях скорости разливки и кратковременных остановках разливки.

Предлагаемый способ регулирования может быть использован в системах автоматического регулирования процесса вторичного охлаждения слитка при непрерывной разливке стали.

Источник информации

1. Патент РФ №2185927 от 18.10.1999 г., МКИ7 В 22 D 11/22, опубл. 27.07.2002 г. Бюл. №21 (прототип).

Формула изобретения

Способ динамического регулирования охлаждения слитка на установке непрерывной разливки металла, включающий регулирование расхода охладителя по секциям зоны вторичного охлаждения в зависимости от изменения скорости вытягивания слитка, отличающийся тем, что регулирование расхода охладителя учитывает перегрев жидкого металла, теплоотвод от слитка в кристаллизаторе и разогрев машины от холодного состояния в пусковом режиме, расход охладителя в каждой секции зоны вторичного охлаждения изменяют по зависимости

где k1(T, ) - коэффициент, учитывающий изменение расхода охладителя в зависимости от перегрева жидкого металла в промковше Т;

k2(q, ) - коэффициент, учитывающий изменение расхода охладителя в зависимости от изменения теплоотвода в кристаллизаторе q;

k3() - коэффициент, учитывающий изменение расхода охладителя во время разогрева машины в пусковом режиме.

РИСУНКИ



 

Похожие патенты:

Изобретение относится к черной металлургии, в частности к способам охлаждения слябов на машинах непрерывной разливки заготовок

Изобретение относится к черной металлургии, в частности к способам охлаждения слябов на машинах непрерывной разливки заготовок криволинейного типа

Изобретение относится к металлургии, а именно к технологии получения слитков на установках непрерывной разливки металла

Изобретение относится к пластинчатому кристаллизатору для получения слитков из стали, в частности, тонких слитков, с водоохлаждаемыми стенками на узких сторонах, которые могут зажиматься между стенками по широким сторонам, и с приспособлениями для изменения полости, образуемой стенками узких и широких сторон для слитков различных размеров, а также погружного стакана, и с приспособлением для создания осциллирующего перемещения

Изобретение относится к металлургии, конкретно к непрерывному литью заготовок из металлов и сплавов

Изобретение относится к металлургии, конкретнее к непрерывной разливке металлов

Изобретение относится к металлургии, конкретнее к непрерывной разливке металлов

Изобретение относится к металлургии, конкретнее к непрерывной разливке металлов

Изобретение относится к металлургии, конкретнее к непрерывной разливке металла

Изобретение относится к способу и устройству для изготовления заготовки из металла посредством установки непрерывной разливки, которая содержит по меньшей мере одно охлаждающее устройство для охлаждения заготовки, причем охлаждающему устройству придана по меньшей мере одна редукционная клеть для обжатия заготовки по толщине, причем заготовка при обжатии по толщине имеет отвердевшую оболочку и жидкую осевую зону

Изобретение относится к оптическим методам контроля технологических параметров установки непрерывной разливки стали (УНРС)

Изобретение относится к непрерывной отливке металлов, в частности стали

Изобретение относится к черной металлургии, в частности к способам охлаждения слябов на машинах непрерывной разливки заготовок криволинейного типа

Изобретение относится к области автоматического управления технологическими процессами, а более конкретно к устройствам, регулирующим расход охлаждающей воды на машинах непрерывной разливки металла
Изобретение относится к металлургии стали

Изобретение относится к терморегулированию пресс-формы литьевой машины

Изобретение относится к металлургии

Группа изобретений относится к способам утилизации энергии в установках для производства заготовки из стали или цветных металлов и установкам для реализации способа. В способе высвобождающуюся при охлаждении, транспортировке или складировании заготовок тепловую энергию и остаточное тепло заготовок улавливают посредством теплообменников, при этом тепло отбирают в теплонесущую среду для ее нагрева. Затем тепло через трубопроводы для транспортировки теплонесущей среды отводят к установке для генерирования электрического тока и/или к другим потребителям тепла для непосредственного использования тепла технологического процесса. Транспортировку теплонесущей среды от теплообменников к установке для генерирования электрического тока осуществляют в трубопроводах для транспортировки теплонесущей среды под давлением посредством насоса, при этом в качестве теплонесущей среды используют минеральное или синтетическое масло-теплоноситель или соляной расплав, не создающие давления пара свыше 2 бар. Технический результат заключается в повышении эффективности использования утилизированной энергии при одновременном упрощении способа утилизации и установки. 2 н. и 12 з.и. ф-лы, 21 ил.

Изобретение относится к области металлургии, а именно к поверхностно-упрочненной стали. Сталь содержит, в мас.%: С от 0,05 до 0,3, Si от 0,01 до 0,6, Mn от 0,20 до 1,0, S от 0,001 до 0,025, Cr от 1 до 2,5, Al от 0,01 до 0,10, Ti от 0,01 до 0,10, Nb от 0,01 до 0,10, В от 0,0005 до 0,005, N от 0,002 до 0,02, железо и неизбежные примеси остальное. Микроструктура стали содержит ферритную составляющую в количестве более 77% по площади, причем среди выделившихся фаз, содержащих Ti и/или Nb, фазы, имеющие размер не менее 20 мкм2, присутствуют с плотностью распределения частиц не более 1,0/мм2, а среди выделившихся фаз, содержащих Ti и/или Nb, выделившиеся фазы, имеющие размер более 5 мкм2 и менее 20 мкм2, и содержащие Mn и S, присутствуют с плотностью распределения частиц более 0,7/мм2 и не более 3,0/мм2. Сталь пригодна к холодной штамповке и обладает высокими характеристиками ударной вязкости после обработки с поверхностным упрочнением. 2 н. и 2 з.п. ф-лы, 4 ил., 6 табл., 1 пр.
Наверх