Оптическая система лазерного доплеровского измерителя скорости

 

Изобретение относится к области лазерных средств измерения и может найти широкое применение в разных областях науки и техники: метеорологии, физике атмосферы, экологии, при определении параметров полета летательных аппаратов, в частности при необходимости измерения скорости газовых потоков, определения вектора скорости ветра, сдвига ветра и прочее. Система содержит лазер, моностатическую антенну, линзу фотодетектора, сам фотодетектор, аксионный кольцеобразователь и светоделительную пластину, при этом оптическая ось линзы фотодетектора располагается перпендикулярно оптической оси моностатической антенны и лежит в одной плоскости с оптическими осями антенной системы, кольцеобразователя и коллиматора. Расположение светоделительной пластины между кольцеобразователем и антенной системой под углом 45° к их оптической оси и оптической оси коллиматора, а также соответствующие расчетным размеры и слои отражающих поверхностей светоделительной пластины обеспечивают формирование гетеродинного излучения достаточной мощности. Достигается значительное уменьшение общих потерь (до 4-5%) гетеродинного излучения и оптической системы в целом по сравнению с известными оптическими системами. Техническим результатом является упрощение конструкции. 1 ил.

Изобретение относится к области лазерных средств измерения и преимущественно может найти применение в лазерных системах для определения параметров полета летательного аппарата (ЛА), лазерных системах, используемых в метеорологии, физике атмосферы, экологии и других областях науки и техники, в частности, когда необходимо измерять скорость ветра, сдвига ветра, аэрозольный и газовый составы и прочее.

Известна оптическая система лазерного доплеровского измерителя скорости (ОС ЛДИС), см. Bilbro I.W. Atmospheric laser Doppler velocimetry Optic Engineering, l980, v.19. №4, p.533-542 [1].

В этой системе луч лазера частично пропускается светоделительной пластиной, создавая луч гетеродинного канала. Основной луч, отразившись от светоделительной пластины, проходит через плоскопараллельную пластину, расположенную к оси луча под углом Брюстера (пластина Брюстера), поворотное зеркало, четвертьволновую пластину и достигает антенны, которая фокусирует луч на заданное расстояние или в дальнюю зону. Излучение, рассеянное на аэрозолях, движущихся в фокальной или дальней зоне антенны измерителя, принимается апертурой антенной системы (АС) и через четвертьволновую пластину, поворотное зеркало направляется к пластине Брюстера, от которой в силу иного направления поляризации (ортогонального поляризации излучения, работающего на передачу) отражается в направлении второй светоделительной пластины, где происходит совмещение оптических осей луча гетеродинного канала и луча, отраженного от пластины Брюстера, с последующим фокусированием смешанного излучения линзой на площадку фотодетектора. Недостаток этой системы заключается в отсутствии фильтрации излучения, рассеянного в фокальной зоне АС, от излучения, рассеянного до и после фокальной зоны, а также сложности конструкции.

За прототип выбрана ОС ЛДИС [2] (см. фиг.1), содержащая моностатическую антенну, пластину Брюстера, четвертьволновую и полуволновую пластины, линзу фотодетектора, светоделительные пластины, поворотные зеркала, аксионный кольцеобразователь, расположенный между светоделительной пластиной и пластиной Брюстера и представляющий собой пластину со скошенными под углом 45° торцевыми гранями и с 45-градусной выборкой.

Недостаток ОС ЛДИС-аналога заключается в остутствии фильтрации излучения, рассеянного из области оптической оси антенны, в ОС ЛДИС (прототип) устранен вводом аксионного кольцеобразователя, но сложность конструкций и той и другой ОС ЛДИС осталась.

Предлагаемая оптическая система упрощенной конструкции представлена на фиг.1, где 1 - лазер, 2 - коллиматор, 3 - светоделительная пластина, 4 - аксионный кольцеобразователь, 5 - моностатическая антенная система, 6 - линза фотодетектора, 7 - фотодетектор.

Работа ОС ЛДИС осуществляется следующим образом. Луч лазера (1) круглого сечения проходит коллиматор (2) и расширенный им до диаметра центрального конуса кольцеобразователя (4), отражаяcь от поверхности "а" светоделительной пластины (3), установленной под углом 45° к оптической оси коллиматора, попадает на центральный конус кольцеобразователя и преобразуется им в кольцевой пучок.

Кольцевой пучок, пройдя антенную систему (АС) (5), которая находится на оптической оси кольцеобразователя, направляется в заданную зону измерения.

Лазерное излучение, рассеянное в фокальной области (зоне измерения) на аэрозолях или других частицах, находящихся в воздухе, или рассеянное от твердой или жидкой поверхности еще чего-либо, собирается той частью антенной системы, которая соответствует внутреннему диаметру кольцевого пучка. Пройдя через антенную систему и отразившись теперь уже от поверхности "в" светоделительной пластины, расеянное излучение собирается линзой фотоприемника (6) и фокусируется ею на чувствительной площадке фотодетектора (7). При этом оптическая ось линзы фотодетектора перпендикулярна оптической оси антенной системы и лежит в одной плоскости с оптическими осями антенной системы, кольцеобразователя и коллиматора.

Часть лазерного излучения после коллиматора, пройдя светоделительную пластину, попадает на линзу фотодетектора и далее на чувствительную площадку фотодетектора, формирует гетеродинное излучение. При этом коэффициент пропускания поверхностей "а" и "в" светоделительной пластины выбирается таким образом, чтобы мощность гетеродинного излучения была достаточной для осуществления процесса гетеродирования. Возможность прямого прохождения части лазерного излучения от коллиматора к линзе фотодетектора, исключение затенения светоделительной пластиной кольцеобразного пучка обеспечиваются соответствующими размерами светоделительной пластины, а также технологией напыления отражающих покрытий ее поверхностей. В настоящее время разработан и исследован опытный образец на предлагаемое устройство ОС ЛДИС. Проведенное исследование подтвердило значительное уменьшение общих потерь (до 4-5%). Упрощается процесс юстировки системы, а количество дорогостоящих оптических элементов по сравнению с известными ОС ЛДИС сокращается почти вдвое.

Разработана и подгтовлена конструкторская документация для промышленного выпуска предлагаемой оптической системы в составе измерительного устройства.

Библиографические данные:

1. Bilbro I.W. Atmospheric laser doppler velocimetry Optic Engineering. - 1980, v.19, №4, р.533-542.

2. A.C. №1760457 Al, G 01 P 3/36, 5/00 (заявка №4.937.104/10 от 19.02.91 г.), опубл. 0709.92, бюл. №33.

Формула изобретения

Оптическая система лазерного доплеровского измерителя скорости, содержащая лазер, моностатическую антенну, линзу фотодетектора, аксионный кольцеобразователь и светоделительную пластину, отличающуюся тем, что система содержит коллиматор, расположенный между лазером и светоделительной пластиной, которая, в свою очередь, размещена между кольцеобразователем и антенной системой, находящихся на одной оптической оси, при этом оптическая ось линзы фотодетектора совмещена с оптической осью коллиматора и пересекается в центре светоделительной пластины с оптической осью антенной системы и кольцеобразователя, причем все оптические оси расположены в одной плоскости.

РИСУНКИ



 

Похожие патенты:

Изобретение относится к измерительной технике, в частности к способам измерения скорости дисперсных частиц, и может быть использовано в химической и плазмохимической технологиях

Изобретение относится к измерительной технике и может использоваться для измерения скорости и перемещения исследуемой среды в самых разных областях науки и техники

Изобретение относится к измерительной технике и может быть использовано в лазерной доплеровской анемометрии для автоматического измерения скоростей различных потоков

Изобретение относится к измерительной технике

Изобретение относится к контрольно-измерительной технике и может быть использовано в гидрои газодинамике, океанологии, промышленной технологии

Изобретение относится к контрольно-измерительной технике и позволяет снизить погрешности измерения

Изобретение относится к измерительной технике и может быть использовано для измерения скорости и расхода различных жидкостей, в том числе оптически непрозрачных, например, нефти, сточных и технических вод, водопроводной воды в трубах большого диаметра, в открытых каналах и морях в экстремальных условиях эксплуатации

Изобретение относится к контрольно-измерительной технике и может быть использовано в стабилизаторах скорости движения различных подводных объектов (ПО)

Изобретение относится к лазерным двухточечным оптическим расходомерам и предназначено для использования преимущественно при транспортировке природного газа

Изобретение относится к измерительной технике и может быть использовано, в частности, в прикладной метеорологии для оперативного дистанционного определения скорости и направления ветра

Изобретение относится к измерениям турбулентностей атмосферы с помощью лидарной системы, в частности на борту летательных аппаратов

Изобретение относится к измерительной технике и может быть использовано, в частности, в прикладной метеорологии для оперативного дистанционного измерения скорости и направления ветра

Изобретение относится к контрольно-измерительной технике и позволяет исследовать потоки жидкости и газа. Изобретение основано на совместном использовании ЛДА и PIV. Устройство включает импульсный лазер с энергией импульса не менее 120 мДж, частотой срабатывания не менее 16 Гц, две CCD камеры с частотным разрешением от 8 до 16 Гц, расположенные под углом 30÷120° друг к другу и под углом 15÷60° к оси канала за ротором, оптические призмы, процессор обработки изображений, лазерный анемометр с оптическим зондом, выполненный на аргоновом лазере и процессоре обработки доплеровских сигналов, и персональный компьютер. Способ включает проведение измерений с помощью ЛДА в двух и более точках нестационарного вихревого потока за ротором ветро- или гидроагрегата для определения временного интервала, освещение потока лазерным ножом, фиксирование изображений засеянных частиц двумя CCD камерами и запись через заданный временной интервал, статистическое осреднение мгновенных полей скорости для n=2÷16 моментов времени внутри полного периода пульсаций вихревой структуры Т выборкой полей скорости, полученных с временной задержкой t=0, T, 2Т, … и (m-1)T, где m - число измерений мгновенных полей скорости для статистического осреднения. Технический результат - существенное уменьшение случайной ошибки измерения и практически полное устранение систематической ошибки, связанной с нестационарными изменениями структуры потока. 2 н.п. ф-лы, 2 ил.

Изобретение относится к контрольно-измерительной технике и позволяет исследовать кинематические характеристики гидропотоков. Способ, основанный на совместном использовании лазерной доплеровской анемометрии (ЛДА) и цифровой трассерной визуализации (PIV), включает установку CCD камер под углом, вычисленным с помощью корректирующего модуля пробоотбора взвеси калибровочных частиц, определение временного интервала между сериями изображений, фиксирование и запись изображений засеянных частиц и статистическое условное осреднение мгновенных полей скорости, при этом внесение корректировок в параметры пороговой чувствительности CCD камер осуществляют в продолжение исследований при уменьшении регистрируемых событий на 10% или более, либо через каждые 3 часа. Устройство включает ЛДА, процессор обработки доплеровских сигналов, две CCD камеры, две оптические призмы, процессор обработки изображений, персональный компьютер и корректирующий модуль пробоотбора взвеси калибровочных частиц, содержащий цилиндрическую кювету для размещения образца рабочей жидкости, лазерный излучатель, шесть или более фотоприемников, установленных вокруг цилиндрической кюветы. Изобретение способствует повышению эффективности проведения измерений характеристик нестационарного гидропотока за счет адаптивного учета изменения оптических свойств исследуемой среды и тем самым повышению эффективности использования измерительного оборудования. 2 н.п. ф-лы, 2 ил.
Наверх