Способ настройки цифровых реактиметров на текущее состояние реактора по составу делящихся элментов топлива

Изобретение относится к контролю характеристик и параметров ядерной безопасности реакторных установок (РУ) атомных электростанций (АЭС) и, в частности, может быть использовано для настройки реактиметров, применяемых на АЭС с реакторами РБМК, на текущее состояние реактора по составу делящихся элементов топлива. Технический результат изобретения - повышение точности контроля параметров ядерной безопасности РУ с реакторами РБМК-1000 за счет снижения (на два порядка по сравнению с прототипом) величины систематической погрешности измерений реактивности и упрощения процедуры настройки реактиметра на текущее состояние реактора по составу делящихся элементов топлива. В способе настройки цифровых реактиметров на текущее состояние реактора по составу делящихся элементов топлива в модуль ПЗУ реактиметра вводят наборы значений параметров, характеризующих соотношение делящихся элементов в топливе с заданным шагом по выгоранию; определяют текущую величину среднего выгорания топлива из данных системы централизованного контроля РУ и выбирают соответствующие наборы значений указанных параметров изменением положения переключателя на задней панели реактиметра. Используют наборы значений параметра αi - доли запаздывающих нейтронов (з.н.) i-й группы в генерации з.н., отвечающие полной композиции делящихся изотопов топлива заданного выгорания, и наборы значений параметра λ

эффi
- эффективных постоянных генерации з.н. i-й группы. Шкала настройки реактиметра прокалибрована в единицах среднего выгорания топлива в активной зоне реактора. 1 з.п. ф-лы, 3 табл.

 

Изобретение относится к контролю характеристик и параметров ядерной безопасности реакторных установок (РУ) атомных электростанций (АЭС) и, в частности, может быть использовано для настройки реактиметров, применяемых на АЭС с реакторами РБМК (реактор большой мощности канальный), на текущее состояние реактора по составу делящихся элементов топлива.

По мере выгорания топлива, а также в результате перехода на эксплуатацию тепловыделяющих сборок (ТВС) нового типа изменяется соотношение делящихся элементов в топливе. В свою очередь это вызывает изменение соотношения запаздывающих нейтронов (з.н.), генерируемых различными делящимися изотопами в топливе. Поскольку для каждого делящегося изотопа (U235, U238, Pu239, Pu241) распределение генерируемых им з.н. по параметру генерации - λ ik (i - номер группы з.н., k - номер изотопа) имеет свои особенности, а указанные распределения влияют на характер поведения реактивности реактора, то при определении реактивности необходима настройка цифрового реактиметра, направленная на учет реального соотношения делящихся элементов в реакторном топливе. Такая настройка позволяет минимизировать систематическую погрешность измерений, обусловленную неучетом детального соотношения различных групп з.н., генерируемых топливной загрузкой реактора.

Известен, взятый в качестве прототипа, способ настройки реактиметра, используемый в цифровом реактиметре ЦВР-9 ("Техническое описание и инструкция по эксплуатации. Э.091.6709.10", инв. №13-177 389, 1996, ГНЦ РФ ФЭИ). В модели реактиметра ЦВР-9 из полного набора изотопов (U235, U238, Рu239, Рu241), характеризующих реакторное топливо, учитывают только 2 изотопа - U235 и Рu239. Учет большего числа делящихся изотопов ограничен аппаратными возможностями реактиметра. Шкала настройки реактиметра ЦВР-9 прокалибрована, в единицах величины вклада Рu239 в генерацию з.н..

Способ настройка реактиметра-прототипа осуществляется следующим образом:

- в модуль постоянного запоминающего устройства (ПЗУ) вводят дискретные наборы исходных данных. Отдельный набор представляет собой комплект из 12 значений параметра α ik (i=1-6 - номер группы з.н., k=1-2 - номер изотопа), характеризующего соотношение различных групп з.н. в топливной загрузке реактора, описываемой композицией делящихся элементов топлива - U235+Рu239 (значения параметра α ik - доли з.н. i-й группы, генерируемых при делении k-го изотопа, в полном числе з.н., генерируемых всеми делящимися изотопами, ). Наборы сформированы в зависимости от величины вклада Рu239 в генерацию з.н.;

- непосредственно перед выполнением физических измерений на РУ из данных системы централизованного контроля (СЦК) определяют величину среднего выгорания топлива;

- по заданной величине среднего выгорания топлива производят оценку величины вклада Рu239 в генерацию з.н. γ kkqk/β , где β k - константы з.н. (табличные данные), соответствующие доле з.н. в полном числе нейтронов, генерируемых при делении k-го изотопа; , qk - доля нейтронов, генерируемых при делении k-гo изотопа в полном числе нейтронов, генерируемых всеми делящимися изотопами (значения величин qk приведены в табл.1 из "Комплексной методики определения физических и динамических характеристик реакторов РБМК", РД ЭО 0137-98);

- устанавливают переключатель учета Рu239 (с дискретной шкалой в единицах параметра γ k) в положение, наиболее близкое к реальному значению этого параметра, тем самым выбирают комплект значений величин ее α ik, соответствующий текущей композиции делящихся изотопов топлива в активной зоне реактора.

Данный способ настройки реактиметра на текущее состояние активной зоны реактора по составу делящихся элементов топлива имеет ряд недостатков. Недостатками способа настройки реактиметра-прототипа являются:

1. Невысокая точность контроля параметров ядерной безопасности РУ (обусловленная значительной систематической погрешностью измерений реактивности), что не гарантирует обеспечение пределов и условий безопасной эксплуатации РУ.

2. Эффект нарастания систематической погрешности измерений реактивности по мере роста выгорания топлива.

3. Неконсервативный характер результатов измерений (переоценка) критических с точки зрения ядерной безопасности параметров реактора (например, подкритичности).

4. Сложность настройки прибора - требуется предварительная процедура оценки учета вклада Рu239 в генерацию з.н. для текущего состояния активной зоны реактора.

5. Масштаб шкалы (γ (Pu239)=0, 10, 20, 30 и 40%) выбран неудачно - большая ее часть соответствует нереальным на сегодняшний день величинам среднего выгорания топлива, превышающим 15 МВт· сут/кгU.

Предлагаемым изобретением решается задача повышения точности контроля параметров ядерной безопасности РУ с реакторами РБМК-1000 за счет снижения (на два порядка по сравнению с прототипом) величины систематической погрешности измерений реактивности и упрощения процедуры настройки реактиметра на текущее состояние реактора по составу делящихся элементов топлива.

Для получения такого технического результата в предлагаемом способе настройки цифрового реактиметра на текущее состояние реактора по составу делящихся элементов топлива в модуль ПЗУ реактиметра вводят наборы значений параметров, характеризующих соотношение делящихся элементов в топливе с заданным шагом по выгоранию; определяют текущую величину среднего выгорания топлива из данных СЦК РУ и выбирают соответствующие наборы значений указанных параметров изменением положения переключателя на задней панели реактиметра.

Отличительные признаки предлагаемого способа заключаются в том, что используют наборы значений параметра α i - доли з.н. i-й группы в генерации з.н., отвечающие полной композиции делящихся изотопов топлива заданного выгорания, и наборы значений параметра λ

эфф
i
- эффективных постоянных генерации з.н. i-ой группы.

Кроме того, особенностью является то, что шкала настройки реактиметра прокалибрована в единицах среднего выгорания топлива в активной зоне реактора.

В предлагаемом способе используется иной по сравнению с прототипом подход для реализации настройки реактиметра на текущее состояние реактора по составу делящихся элементов топлива в условиях ограниченных аппаратных возможностей реактиметра. В прототипе приближенное описание полной композиции делящихся элементов реализуется за счет учета лишь части делящихся изотопов топлива - наиболее представительных (по величине вклада в генерацию нейтронов) или наиболее характерных с точки зрения учета особенностей распределения з.н. по параметру генерации λ ik. В предлагаемом способе аналогичная проблема решается введением эффективных параметров задачи, соответствующих описанию полной композиции делящихся элементов одним эквивалентным элементом, в соответствие которому ставится спектр з.н., приближенно описывающий реальный спектр з.н. при сохранении разбиения з.н. на группы:

Соотношение между вкладами отдельных делящихся изотопов в генерацию нейтронов определяется, прежде всего, выгоранием топлива. Это соотношение влияет на поведение реактивности в переходных процессах, что отражается в характере поведения сигналов нейтронных датчиков. Определяется указанное соотношение значениями вышеупомянутого параметра qk, однозначно связанного с параметром γ k, характеризующим вклад отдельных изотопов в генерацию з.н. Поскольку параметры настройки реактиметра - α ik связаны с γ k соотношением α ikikγk, где аik - константы з.н. (табличные данные), соответствующие доле з.н. i-й группы в полном числе з.н., генерируемых при делении k-гo изотопа, то и α ik, а следовательно, и и , зависят только от выгорания топлива. Тип топлива (обогащение, наличие выгорающего поглотителя) вносит поправку второго порядка малости, что в особенности справедливо в отношении топлива с обогащением 2.4% и эрбиевых ТВС (ЭТВС) с обогащением 2.6 и 2.8% (см. представленную ниже табл.1).

Отмеченный факт имеет принципиальное значение для технической реализации настройки реактиметров на текущее состояние активной зоны по составу делящихся элементов топлива - такая настройка сводится к настройке на текущее значение среднего выгорания топлива.

Таблица 1

Величины долевого вклада отдельных изотопов в генерацию нейтронов деления (qk, %) для ячейки реактора РБМК при различной энерговыработке топлива с обогащением 2% и 2,4% и ЭТВС с обогащением 2,6 и 2,8%.
Тип топливнойkИзотопыЭнерговыработка топлива, МВт-сут/кгЦ
   051015202530
ТВС, 2.0%1U-23595.4870.7155.9443.7933.9820.044.25
 2Pu-239023.8535.6643.6049.7257.0365.88
 3U-2384.524.654.995.496.086.837.81
 4Pu-24100.793.437.1811.3216.1022.06
ТВС, 2.4%1U-23595.9275.4962.5151.7341.5929.5915.19
 2Pu-239019.7730.5338.0144.1151.2659.77
 3U-2384.084.214.504.905.446.147.09
 4Pu-24100.532.465.368.8713.0117.95
ЭТВС, 1U-23595.7675.4462.5151.7541.6229.6215.22
2.6%2Pu-239019.7530.5338.0344.1651.3459.87
 3U-2384.244.284.504.865.356.026.94
 4Pu-24100.532.465.368.8713.0217.97
ЭТВС, 1U-23595.6875.4062.4851.7441.6229.6315.24
2.8%2Pu-239019.7230.5138.0344.1851.3859.95
 3U-2384.324.354.554.875.335.966.82
 4Pu-24100.532.465.368.8713.0317.99

В результате практического применения предлагаемого способа повышается безопасность эксплуатации РУ вследствие повышения точности контроля и обеспечения консервативности оценок параметров и характеристик реактора, значительно упрощается процедура настройки реактиметра на текущее состояние реактора по выгоранию топлива.

Так, например (см. табл.2):

1. Снижается на два порядка по сравнению с прототипом систематическая погрешность измерений (сравни колонки 5 и 7 табл.2).

2. Достигается консервативная оценка (см. колонки 6 табл.2) параметров ядерной безопасности (результатов измерений), что гарантирует обеспечение пределов и условий безопасной эксплуатации РУ.

Данные табл.2 являются результатом опытно-расчетного моделирования измерений, включая моделирование нейтронного сигнала датчиков при введении в реактор "скачка" реактивности 5.0β эфф. В качестве "опорной" модели при моделировании измерений реактивности рассматривалась модель с учетом полного набора делящихся элементов топлива (U235, U238, Рu239, Рu241). Отличие результатов моделирования измерений при использовании других моделей от опорной модели (δ ) рассматривается в качестве оценки систематической погрешности измерений.

Таблица 2

Зависимость результатов измерений реактивности (β эфф) от средней энерговыработки топлива реактора РБМК для прототипа и предлагаемого способа
Опорная "эталонная" модель, полная композиция делящихся изотопов (U5+U8+Pu9+Pu41)Прототип, ограниченная композиция делящихся изотопов (U5+Pu9)Предлагаемый способ (α i и λ iэфф)
 Результат sec; измеренийsec; , β эффδ , %Результат sec; измеренийsec; , β эффδ , %Результат sec; измеренийsec; , β эффδ , %
1234567
о5,0000.05,2334,664,998-0,04
55,0000.05,2815,624,997-0,06
105,0000.05,3396,784,996-0,08
155,0000.05,4138,264,995-0,10
205,0000.05,50610,124,994-0,12

Предлагаемый способ настройки цифровых реактиметров на текущее состояние реактора осуществляется следующим образом:

- в модуль ПЗУ реактиметра вводят дискретные наборы исходных данных.

Отдельный набор представляет собой комплект из 6 значений параметра α i, характеризующего соотношение различных групп з.н. в топливной загрузке реактора, описываемой полной композицией делящихся элементов топлива, и комплект из 6 значений параметра λ

эфф
i
, характеризующего групповые эффективные постоянные генерации з.н., соответствующие описанию композиции делящихся элементов одним эквивалентным элементом. Наборы сформированы в зависимости от величины среднего выгорания топлива в активной зоне реактора (см. табл.3, полученную опытно-расчетным путем);

- непосредственно перед выполнением физических измерений на РУ из данных СЦК определяют величину среднего выгорания топлива;

- устанавливают переключатель настройки реактиметра (с дискретной шкалой в единицах среднего выгорания топлива) в положение, наиболее близкое к реальному значению этого параметра, тем самым выбирают один из пяти комплектов значений величин α i и λ эфф, соответствующий текущей композиции делящихся изотопов топлива в активной зоне реактора.

Таблица 3

Наборы значений параметра α i и λ iэфф в предлагаемом способе настройки цифровых реактиметров на текущее состояние реактора по составу делящихся элементов топлива
Положение переключателя настройки реактиметра на текущее состояние реактораα iλ iэфф
“0”

(Р=0 МВтс/кг)
0.033

0.219

0.196

0.395

0.115

0.0124

0.0305

0.111

0.301

1.14

3.01
“1”

(Р=5 МВтс/кг)
0.0309

0.2139

0.1934

0.3894

0.1272

0.0125

0.0307

0,1149

0.3086

1.1959

3.1749
“2”

(Р=10 МВтс/кг)
0.0304

0.2155

0.1933

0.3860

0.1299

0.0125

0.0307

0.1165

0.3116

1.2169

3.2125
“3”

(Р=15 МВтс/кг)
0.0294

0.2164

0.1926

0.3832

0.1338

0.0126

0.0307

0.1183

0.3153

1.2435

3.2565
“4”

(Р=20 МВтс/кг)
0.0281

0.2168

0.1915

0.3805

0.1389

0.0126

0.0308

0.1202

0.3196

1.2752

3.3114
При Р=0 МВт-сут/кг (положение переключателя “0”) принято q(8)=0, а не q(8)=4.08% (см. табл.1). Причина заключается в том, что при этом положении переключателя стандартно производится поверка реактиметра с помощью имитатора кинетики реактора, в модели которого реализован 6-ти групповой набор констант з.н., соответствующий учету только U235.

В настоящее время предлагаемый способ готовится к внедрению в промышленную эксплуатацию на Смоленской АЭС.

1. Способ настройки цифровых реактиметров на текущее состояние реактора по составу делящихся элементов топлива, включающий ввод в модуль постоянного запоминающего устройства (ПЗУ) реактиметра дискретных наборов значений параметров, характеризующих генерацию нейтронов в топливной загрузке реактора с известным средним выгоранием топлива, определение текущей величины среднего выгорания топлива из данных системы централизованного контроля (СЦК) реакторной установки (РУ) и выбор соответствующих наборов значений указанных параметров изменением положения переключателя на задней панели реактиметра, отличающийся тем, что используют наборы значений параметра αi - доли запаздывающих нейтронов (з.н.) i-ой группы в генерации з.н., отвечающие полной композиции делящихся изотопов топлива заданного выгорания, и соответствующие наборы значений параметра λ

эфф
i
- эффективных постоянных генерации з.н. i-ой группы.

2. Способ по п.1, отличающийся тем, что шкалу настройки реактиметра калибруют в единицах среднего выгорания топлива в реакторе.



 

Похожие патенты:

Изобретение относится к физике ядерных реакторов и может быть использовано для измерения эффективности стержней регулирования реакторных установок (РУ) атомных станций, критсборок, исследовательских реакторов в случаях, когда по условиям эксплуатации РУ необходимо обеспечить метрологическую аттестацию этих измерений.

Изобретение относится к контролю характеристик и параметров ядерной безопасности реакторных установок (РУ) атомных электростанций (АЭС) и, в частности, может быть использовано для настройки реактиметров, применяемых на АЭС с реакторами РБМК, на текущее состояние реактора по составу делящихся, а также элементов топлива.

Изобретение относится к физике ядерных реакторов, а именно к обеспечению ядерной безопасности ядерных реакторов и критических сборок, именуемых далее ЯУ (ядерные установки), и может быть использовано в дальнейшем при оценке таких основных параметров подкритического реактора как эффективный коэффициент размножения, реактивность.

Изобретение относится к области физики и техники реакторов, более конкретно к методам контроля и обеспечения безопасности подкритических сборок. .

Изобретение относится к средствам оперативного контроля реактивности ядерного реактора при широком диапазоне изменения нейтронного потока. .

Изобретение относится к ядерной технике, а именно к контролю состояния ядерного реактора с водяным теплоносителем и замедлителем при пуске. .

Изобретение относится к области аналого-цифровой вычислительной техники и может быть использовано для проверки приборов измерения реактивности ядерных реакторов (реактиметров)

Изобретение относится к физике ядерных реакторов и может быть использовано для измерения реактивности любых размножающих сред - ядерных реакторов, критсборок, хранилищ делящихся материалов

Изобретение относится к области аналого-цифровой вычислительной техники и может быть использовано для поверки приборов измерения реактивности ядерных реакторов и оперативной проверки их работоспособности

Изобретение относится к способам экспериментального определения физических характеристик ядерных реакторов и может быть использовано при оценке эффективного коэффициента размножения и реактивности ядерного реактора

Изобретение относится к физике ядерных реакторов, а именно к обеспечению ядерной безопасности при эксплуатации ядерных установок (ЯУ) - ядерных реакторов и критических сборок ЯУ

Изобретение относится к физике реакторов и может быть использовано при эксплуатации ядерных реакторов и критических сборок (ЯУ)

Изобретение относится к физике ядерных реакторов и может быть использовано для экспериментально-расчетного определения эффективного коэффициента размножения (kэфф) активных зон ядерных установок (ЯУ)

Изобретение относится к физике ядерных реакторов и может быть использовано для измерения F - нейтронной мощности реактора в абсолютных единицах, например, при пусках космических ядерных энергетических установок (КЯЭУ). Техническим результатом, на которое направлено изобретение, является увеличение максимальных значений F. В способе измерения нейтронной мощности ядерного реактора в абсолютных единицах F=V·γ, где V - значение мощности реактора в относительных единицах, γ - коэффициент пропорциональности, нейтронную мощность ядерного реактора в относительных единицах измеряют как среднюю скорость счета детектора нейтронов в стационарном критическом состоянии средствами измерения При этом коэффициент пропорциональности рассчитывают, используя значение автокорреляционной функции. В качестве средства измерения числа нейтронов используют ионизационную камеру для определения флуктуации числа нейтронов. Измеряют отдельно среднее значение тока ионизационной камеры и флуктуирующую составляющую тока ионизационной камеры непрерывно во времени с интервалом дискретности, рассчитывают автокорреляционную функцию флуктуирующего тока ионизационной камеры, после чего рассчитывают коэффициент пропорциональности. 2 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к способам контроля ядерных реакторов разного класса и назначения и может найти применение для определения их физических характеристик как на критических сборках и исследовательских стендах, так и на энергоблоках атомных станций. Перемещением рабочего органа системы регулирования и защиты ядерного реактора реактор переводят из состояния, близкого к критическому, в подкритическое состояние. Эту операцию производят дважды, причем одно перемещение выполняют со скоростью движения стержней V1, а другое - со скоростью V2(V1≠V2). По сигналам детектора, используемого для контроля потока нейтронов в реакторе, зарегистрированным на интервале движения рабочего органа в каждом из перемещений, и значениям реактивности, полученным решением обращенного уравнения кинетики, вычисляют коэффициент неравномерности распределения потока нейтронов в области активной зоны, формирующей сигнал детектора; вычисляют поправку к реактивности, устраняющую методическую погрешность определения эффективности рабочего органа, обусловленную пространственным эффектом реактивности. Технический результат - повышение точности определения эффективности рабочего органа. 2 з.п. ф-лы.
Наверх