Способ получения ароматических полиамидов

Изобретение относится к способу получения ароматических полиамидов, которые могут быть использованы в различных областях техники в качестве высокопрочных и высокотермостойких покрытий, связующих для пластмасс, стеклопластиков, клеев и пленок. Способ получения включает две стадии. На первой стадии получают полиимидаты неравновесной поликонденсацией бис-фенолов с N-фенилиминхлоридом на основе моно- и дикарбоновых кислот. Затем полученные полиимидаты подвергают перегруппировке Чепмена при 240-260°С в течение 5-6 час. Изобретение позволяет создать полимеры с хорошей растворимостью и повышенной термостойкость. 2 табл.

 

Изобретение относится к химии высокомолекулярных соединений, в частности, к способу получения термостойких полигетероариленов, которые могут быть использованы в промышленности полимерных изделий, в частности связующих для пластмасс и стеклопластиков, а также клеев, покрытий и пленочных материалов.

Известны (Пат. США №3418275, опубл. 1968 г., Пат. США №3624033, опубл. 1971 г., Федотова О.Я. и др. Высокомол. соед. - 1960. - Т.2. - с.899-903., Hesegawa H. Bull. Chem. Soc. Japan. - 1954. - V.27. - p.227-235.) классические способы получения ароматических полиамидов (АПА) низкотемпературной поликонденсацией диаминов с дикарбоновыми кислотами или их производными и гомополиконденсацией ароматических аминокислот или их производных в растворе, в расплаве и на границе раздела фаз. Данные методы приводят к получению полимеров с ограниченной растворимостью, недостаточной термостойкостью и небольшим интервалом между температурами размягчения и разложения и, как следствие, приводят к плохой перерабатывающейся способности полимеров данного типа.

Выделить наиболее близкий аналог предлагаемому изобретению невозможно, т.к. существующие методы и некоторые из них приведенные заключаются в реакциях поликонденсации или полимеризации мономера или мономеров, а предлагаемый метод заключается в перегруппировке предварительно полученного полиимидатного звена.

Техническим результатом изобретения является повышение термостойкости, улучшение физико-механических характеристик и обеспечение возможности переработки ПА в изделия современными промышленными методами.

Для достижения технического результата предложено получение N-фенилзамещеных ароматических ПА по реакции внутримолекулярной термической перегруппировки полиимидатов (полиимидоэфиров) перегруппировкой Чепмена [Вацуро К.В, Мищенко Г.Л. // Именные реакции в органической химии. М.: Химия, 1976, 471 с.; Chapman A.W. // J.Chem. Soc. 1925. V.127. P.1992]. Полиимидаты получают неравновесной поликонденсацией бис-фенолов с небольшим избытком N-фенилиминохлорида на основе моно- и дикарбоновых кислот (мольное соотношение бис-фенола к N-фенилиминохлориду 1,000:1,080-1,120) следующего строения:

Реакции осуществляют по следующей схеме:

Коэффициенты m и n - количество молей мономеров, вступивших в реакцию поликонденсации. Соотношение m/(n-m) и коэффициент р - степень полимеризации, лежащая в области 43-50 и 38-46, соответственно.

Реакцию неравновесной поликонденсации в растворе N-метил-2-пирролидона (N-МП) бис-фенола с N-фенилиминохлоридом проводят следующим образом.

В раствор (N-МП) бис-фенола и триэтиламина при перемешивании и 20°С небольшими порциями в течении 15-20 мин. вводят раствор (N-МП) N-фенилиминохлорида. После гомогенизации реакционную смесь помещают в металлическую баню с одновременным продуванием аргона. Поликонденсацию ведут в течение 15-16 часов при 150-160°С, в зависимости от строения исходных мономеров с образованием полиимидатов, выход 94-97%.

Перегруппировку осуществляли при 240-260°С в течение 5-6 часов, при этом происходило незначительное уменьшение молекулярной массы образующегося полиамида. Полимеры полностью растворимы в концентрированных серной и муравьиной кислотах, амидных растворителях. Условия проведения реакций и свойства полученных ароматических ПА приведены в таблице 1.

Строение полученных ароматических ПА подтверждено данными ИК-спектроскопии, ЯМР С13- и Н1-спектроскопии. Так, по данным ИК-спектроскопии характеристические полосы поглощения с области 1665-1635 см-1 (C=N) смещаются в область 1690-1660 см-1 (С=О), а полосы в области 1280-1260 см-1 имидоэфирной (С-О) связи практически отсутствуют.

Согласно данным динамического термогравиметрического анализа (5 град/мин, на воздухе), полиамиды теряют 10% начального веса при 410-460°С (см. Таблицу 1).

Прессованием порошков ароматических полиамидов при давлении 70-75 МПа и 250-350°С получены пресс-материалы, свойства которых приведены в Таблице 2.

Предлагаемый способ подтверждается следующими нижеприведенными примерами. Все примеры приведены с небольшим избытком N-фенилиминохлорида.

Пример 1. К раствору (N-МП) бис-фенола (0,01 моль) в трехгорлой колбе, снабженной мешалкой, вводом для аргона и капельной воронкой, при интенсивном перемешивании в присутствии триэтиламина (0.022 моль) в течение 15-20 мин. приливали раствор (N-МП) N-фенилиминохлорида на основе дикарбоновых кислот (0,011 моль) при 20°С. Гомогенизированную реакционную смесь погружали в баню с одновременной подачей аргона со скоростью 10-30 мл/мин. Синтез вели в течение 15-16 часов при 150-160°С. Продукт высаживали в 2%-ный водный раствор аммиака, отделяли на фильтре, промывали последовательно 1%-ным раствором бисульфита натрия и водой. Сушили в вакуум-шкафу при 60-70°С до постоянной массы.

Перегруппировку полиимидатов в ПА осуществляли в конденсационной пробирке при 240-260°С в течение 5-6 часов при продувании аргона со скоростью 10-30 мл/мин. Выход ПА количественный.

Пример 2. К раствору (N-МП) резорцина 1,1000 г (0,0100 моль) в трехгорлой колбе, снабженной мешалкой, вводом для аргона и капельной воронкой, при интенсивном перемешивании в присутствии триэтиламина 2,2220 г (0,0220 моль) в течение 15-20 мин. приливали раствор (N-МП) N,N’-дифенилизофталиминохлорида 3,8830 г (0,0110 моль) при 20°С. Гомогенизированную реакционную смесь погружали в баню с одновременной подачей аргона со скоростью 10-30 мл/мин. Синтез вели в течение 15-16 час при 150-160°С. Продукт высаживали в 2%-ный водный раствор аммиака, отделяли на фильтре, промывали последовательно 1%-ным раствором бисульфита натрия и водой. Сушили в вакуум шкафу при 60-70°С до постоянной массы.

Перегруппировку полиимидатов в ПА проводили аналогично примеру 1.

Пример 3. Неравновесную полигетероконденсацию между бис-фенолами и N-фенилиминохлоридами на основе монокарбоновых кислот, а именно поликонденсацию 1,1000 г (0,0100 моль) гидрохинона и 4,8060 г (0,0108 моль), 4,4’-окса-бис-(N-фениленбензиминохлорида) в присутствии триэтиламина 2,1816 г (0,0216 моль) и последующую перегруппировку в ПА проводили аналогично примеру 1.

Загрузка полиимидатов для перегруппировки в ПА во всех примерах составляла 0,005 моль, степень перегруппировки - 74,5-88,7%.

Таблица 2

Физико-механические свойства пресс-материалов на основе полученных ПА.
п./н.ПАУдельная ударная вязкость, кгс см/см2 ГОСТ 4647-80Разрушающее напряжение при растяжении, МПа ГОСТ 4648-71
R’ или R’’R
1.1a2a7,5-8,5600
2.1a2c6,5-7,5580
3.1b2a6,5-7,0590
4.1b2b6,0-6,5570
5.1.1a2a8,0-8,5600
6.1.1a2c7,0-7,5590
7.1.1b2b7,0-7,5620
8.1.1b2c7,0-7,5630

Как видно из приведенных данных Таблиц 1, 2, предлагаемый способ получения ароматических ПА выгодно отличается тем, что получаются полимеры с высокими значениями вязкостных свойств, сравнительно хорошей растворимостью и хорошей перерабатываемостью в полимерные материалы современными методами, а также высокими значениями физико-механических свойств их материалов и высокой стойкостью к термоокислительной деструкции.

Таблица 1

Условия получения и свойства ароматических ПА
п./н.ПАБрутто-формула эл/звенаМ.М. эл/звена г/мольη прив. (ДМФА) дл/г1Условия полученияТ начала разложения, °С2Т начала размягчения, °C3
R’ или R’’RТ,°СПродол-сть, час
1.C26H18O2N23900,672405430320
2.2b0,682405420315
3.C32H22O4N2S5300,702605450280
4.1bC26H18O2N23900,652506420300
5.2b0,712506410295
6.C32H22O4N2S5300,682605430310
7.1.1aC33H24O2N24800,602506440300
8.2b0,642506430290
9.C39H28O4N2S6200,662605455290
10.1.1bС32Н22O3N24820,642506440270
11.2b0,692506430280
12.С38H26О5N2S6320,672605460270
Примечания: 1 - измерения проведены при 20°С, с=0,5 г/дл. 2 - температура, соответствующая 10% потери массы. 3 - температура, соответствующая 5% деформации.

Вышеперечисленный комплекс практически полезных свойств полученных ароматических ПА определяет положительный эффект изобретения. Полученные ароматические ПА могут быть использованы в различных областях техники в качестве высокопрочных и высокотермостойких покрытий, связующих для пластмасс, стеклопластиков, пленок и клеев.

Способ получения ароматических полиамидов, включающий неравновесную поликонденсацию бис-фенолов с N-фенилиминхлоридом на основе моно- и дикарбоновых кислот до получения полиимидатов и последующую их перегруппировку Чепмена при температуре 240-260 °С в течение 5-6 ч.



 

Похожие патенты:

Изобретение относится к технологии получения поли-n-фенилентерефталамида (ПФТА) - ароматического полиамида и его сополимеров, используемых в производстве высокопрочных, высокомодульных волокон.
Изобретение относится к способу получения порошков ароматических сополимеров, предназначенных для производства пластмассовых изделий, а также лаков и пленочных материалов
Изобретение относится к технологии получения нитей и волокон из ароматического сополиамида и может быть использовано для изготовления композиционных материалов специального назначения и тканей с повышенными эксплуатационными свойствами для изготовления специальной защитной одежды

Изобретение относится к технологии получения термостойких нитей из ароматических полиамидов, в частности сополиамидобензимидазола (СПАБИ), и может быть использовано для производства фильтровальных тканей для очистки горячих газов от токсичной пыли; в текстильной промышленности для пошива защитной одежды спасателей, пожарных, нефтяников, газовиков и других, работающих в экстремальных ситуациях, для изготовления ковровых покрытий, декоративно-отделочных тканей

Изобретение относится к технологии получения высокопрочных термостойких нитей из ароматического сополимера с гетероциклами в цепи, в частности сополиамидобензимидазола (СПАБИ), и может быть использовано при армировании пластиков, производстве резинотехнических изделий, кабелей волоконной оптики и других изделий специального назначения

Изобретение относится к химии высокомолекулярных соединений, в частности к способу получения термостойких полигетероариленов, которые могут быть использованы в промышленности полимерных изделий как связующие для пластмасс и стеклопластиков, а также клеев, покрытий и пленочных материалов
Изобретение относится к способу получения ароматического полиамида, к ароматическому полиамиду, включающему звенья пара-фенилентерефталамида и 2-(п-фенилен)бензимидазолтерефталамида, а также к способу получения очищенного ароматического полиамида, пригодного для получения прядильного раствора, применяемого для изготовления волокон и пленок
Изобретение относится к технологии получения материалов для нанесения защитных покрытий на поверхность различных естественных и искусственных субстратов

Изобретение относится к ароматическим полиамидным волокнам на основе гетероциклсодержащего ароматического полиамида, способу их изготовления, ткани, образованной волокнами, и армированному волокном композитному материалу, армированному данными волокнами, и может быть использовано в различных областях

Изобретение относится к технологии получения высокопрочных высокомодульных нитей на основе сополиамидобензимидазолов
Наверх