Состав и способ образования массы карбонированных огнеупоров

Изобретение относится к технологии огнеупорных материалов, более конкретно к производству карбонированных огнеупоров, используемых в футеровках металлургических агрегатов. Состав массы карбонированных огнеупоров содержит, мас.%: алюмомагнезиальный зернистый наполнитель 19,0-26,0, тонкомолотый комплексный заполнитель 15,0-35,0, пластификатор 0,9-1,6, углеродсодержащая смола 2,9-3,8, остальное - зернистый периклазовый наполнитель. При этом комплексный тонкомолотый заполнитель представлен смесью, мас.%: периклаз 50,0-81,0; графит 11,0-27,0; корунд 3,0-9,0; диоксид циркония 2,0 – 6,0; Al металлический 3,0-8,0. Способ образования массы карбонированных огнеупоров включает следующие операции: введение в поток зернистого периклазового наполнителя алюмомагнезиального зернистого наполнителя, добавление пластификатор, капсулирование поверхности зерен, и последующее введение комплексного тонкомолотого заполнителя, углеродсодержащей смолы, смешивание до образования карбонированной массы с насыпной плотностью 1,65-2,0 г/см3. Полученную массу выгружают из смесителя и подвергают вылеживанию не менее 3 часов, после чего формуют изделия и термообрабатывают при температуре выше 150°С.2 н. и 1 з.п.ф-лы, 1 табл.

 

Изобретение относится к технологии огнеупорных материалов, а именно производству карбонированных огнеупоров, используемых в футеровках металлургических агрегатов, подвергающихся при эксплуатации воздействию интенсивных химических, термических, механических нагружений.

Имеющиеся литературные и патентные источники информации по составам масс и способам получения карбонированных огнеупоров свидетельствуют, что повышение физико-технических и потребительских свойств осуществляется за счет совершенствования фазового состава карбонированных огнеупоров, введением в состав шихты добавок (Патент США №116782, С 04 В 035/52, 1981; Патент США №667483, С 04 В 035/52, 1993), применения альтернативных фенолформальдегидной смоле и пеку типов связующих (Патент США №254980, С 08 К 005/06, С 08 К 003/04, 1983; Патент США №271657, С 04 В 035/00, 1991), путем совместного введения углеродсодержащего ингредиента с добавкой промотора в виде гранул (Патент РФ №2151123 С 04 В 35/035, 35/103, 2000) или путем сопряжения углеродсодержащего ингредиента с антиокислительной добавкой, фенольным связующим, композиционным углеродистым пластификатором, в виде пластифицирующихся гранул (Патент РФ №2171243, С1, 2000). Предложены технические решения повышения термомеханических характеристик и стойкости к окислению путем формирования более плотного и менее дефектного кокса связующей углеродной матрицы за счет применения комбинированных связующих на основе пека, смолы и сажы. (Патент США №490816, С 04 В 035/52, 1985; Патент США №638954, В 28 В 007/34, C 08 L 005/00, 1993; Патент США №428965, С 04 В 035/54, 1991). Принимаемые меры направлены на уменьшение окисления углеродистого компонента и деградации микроструктуры карбанированного огнеупора удорожают огнеупорную продукцию, но как показывает практика промышленного применения таких огнеупоров, это не всегда сопровождается необходимым

увеличением сроков эксплуатации футеровок металлургических агрегатов. Т.о. известные решения не достаточны для формирования в огнеупоре низкопористой микроструктуры с пониженной теплопроводностью, что имеет ведущее влияние на снижение разрушения огнеупоров в процессе эксплуатации, для уменьшения глубины проникновения расплава стали и шлака в объем огнеупора, повышения теплового сопротивления огнеупорной кладки футеровки агрегата.

Ближайшим к заявленному составу и способу образования массы карбонированных огнеупоров является состав и способ образования массы карбонированных огнеупоров с повышенной устойчивостью к термическим напряжениям (Патент США 5438026, С 04 B 35/52, 1994). Для достижения этой цели периклазоуглеродистую массу приготавливают из зернистого периклазового наполнителя, графита, смеси совместного помола магниево-алюминиевого сплава с тонкомолотым периклазом и углеродистой органической связки.

Такое техническое решение при высокой плотности изделий не обеспечивает низкой теплопроводности менее 8-9 Вт/м-К, не сдерживает проникновение расплава стали и шлака в объем огнеупора, требует выпуска из сталеплавильного агрегата в ковш предварительно перегретого на 60-90°С расплава стали из-за низкого теплового сопротивления карбонированого огнеупора, что приводит к повышенной скорости износа футеровки более 2.5 мм/плавку и сокращению ресурса эксплуатации футеровки сталеразливочного ковша.

Задачей изобретения является разработка состава и способа образования массы карбонированных огнеупоров с высокими эксплуатационными характеристиками.

Технический результат состоит в том, что полученный карбонированный огнеупор обладает плотной, мелкопористой микроструктурой, высоким сопротивлением проникновению расплава и шлака в объем карбонированного огнеупора, с пониженной теплопроводностью и скоростью разрушения в футеровке рабочего слоя днища сталеразливочного ковша.

В состав массы огнеупоров входят следующие ингредиенты, мас.%: зернистый алюмомагнезиальный наполнитель -19,0-26,0%, тонкомолотый комплексный заполнитель -15,0-35,0%, пластификатор 0,9-1,6%, углеродсодержащая смола 2,9-3,8%, зернистый периклазовый наполнитель - остальное, при этом тонкомолотый комплексный заполнитель представлен смесью, состоящий из (мас.%) периклаза 50,0-81,0%, графита 11,0-27,0%, корунда 3,0-9,0%, диоксида циркония 2,0-6,0%, металлического Аl 3,0-8,0%.

Технический результат достигается функциональной организацией стохастической текстуры массы путем направленного распределения наполнителей зернистого периклаза и зернистого алюмомагнезиального материала, тонкомолотого комплексного заполнителя, графита, пластификатора, углеродсодержащей смолы.

Сущность и реализация способа состоит в том, что в смеситель в поток зернистого периклазового наполнителя вводят зернистый алюмомагнезиальный наполнитель 19,0-26,0 мас.%, добавляют пластификатор 0,9-1,6 мас.%, капсулируют поверхность зерен, вводят комплексный тонкомолотый заполнитель 15,0-35,0 мас.%, перемешивают, добавляют 2,9-3,8 мас.% углеродсодержащей смолы, продолжают смешивание до образования карбонированной массы с насыпной плотностью 1,65-2,0 г/см3, выгружают из смесителя и подвергают вылеживанию не менее 3 часов для эвакуации газовых выделений продуктов реакций, после чего формуют изделия при усилии более 100 МПа, термообрабатывают при температуре выше 150°С.

Заявляемый способ обеспечивает функциональную организацию текстуры массы и мелкопористой плотной микроструктуры карбонированного огнеупора за счет направленного распределения ингредиентов, позволяет более полно использовать свойства промотора металлического алюминия и модифицирующих добавок ZrО2, Al2О3 за счет управляемого распределения их между огнеупорным зернистым наполнителем полифракционного состава. Подбор зернового и минерального состава компонентов огнеупорной матрицы позволяет получать структуру огнеупора с высокими эксплуатационными характеристиками: высокой сопротивляемостью к воздействию расплавов стали, шлака, низкой теплопроводностью. Кроме того, заявляемый способ обеспечивает уменьшение вовлечения в массу карбонированных огнеупоров воздуха, высокую плотность изделий после прессования и обжига, регулирует направленность химических реакций при эксплуатации огнеупора.

Карбонированные огнеупорные изделия из образованной таким образом карбонированной массы обладают исключительно высокими антиокислительными, термомеханическими и теплоизолирующими свойствами.

В предлагаемом техническом решении использовались плавленый периклаз (содержание МgО не менее 97 мас.%), алюмомагнезиальный материал (содержание МgО 37-39 мас.%, Аl2Оз 58-62 мас.%), графит марки +198, нормальный электрокорунд по ГОСТ 28818-90, диоксид циркония по ГОСТ 21907-76, алюминий порошкообразный марки АСД по ГОСТ 51667-97, смола фенольная порошкообразная марки 0125М по ТУ 2257-241-00203447-97, этиленгликоль по ГОСТ 19710-83 и их аналоги: спеченный периклаз отечественного производства (содержание МgО не менее 96%), спеченный периклаз импортного производства марки Premier LC (содержание МgО не менее 96%), шпинельные порошки марок MR66, MR78, MR90, графит марок ГТ-1 по ГОСТ 4596-75, марки -198, порошки корундовые по ТУ 14-8-531-87, ТУ 14-8-384-81, глинозем марки ГОО по ГОСТ 30558-98, алюминий марки АПВ-П по ТУ 1791-114-0019491-95, смола фенольная марок СТ 2163 по ТУ 2257-004-05761778-2002, СФП-012К по ТУ 2257-074-05015227-2002. Предлагаемое техническое решение обладает новизной, техническим уровнем и промышленно применимо, позволяет получать изделия с показателями свойств, превосходящими прототип.

Ниже приводятся примеры реализации состава и способа образования массы карбонированных огнеупоров.

Пример 1

В работающий смеситель в поток огнеупорного зернистого наполнителя полифракционного состава в количестве 60,3 мас.%, состоящего из 45 мас.% плавленого периклаза, 20% плавленого алюмомагнезиального материала фракции 3-1 мм, вводят 0,9 мас.% пластификатора этиленгликоля по ГОСТ 19710-83, ведут смешение до капсулирования поверхности зерен за счет образования на поверхности органической пленки, вводят 35 мас.% комплексного тонкомолотого наполнителя, который представлен: 54,0 мас.% плавленого периклаза (содержание МgО не менее 97 мас.%), 25,7 мас.% графита марки +198, 8,9 маc.% электрокорунда марки 25А по ГОСТ 28818-90, 5,4 мас.% диоксида циркония марки ЦРО-1 пo ГОСТ 21907-76, 6,0 мас.% алюминия порошкообразного марки АСД-1 8,0 маc.% по ГОСТ 51667-97, перемешивают, вводят 3,8 мас.% смолы фенольной порошкообразной марки 0125М по ТУ 2257-241-00293447-97, продолжают смешение до образования массы с насыпной плотностью 1,65 т/м, массу выгружают из смесителя и подвергают вылеживанию в течение 5 часов с эвакуацией газовых выделений, после чего формуют изделия при усилии 200 МПа. Свойства полученного таким образом изделия приведены в таблице.

Пример 2

В смеситель в поток огнеупорного зернистого наполнителя полифракционного состава в количестве 70,2 мас.%, состоящего из 50 мас.% плавленого периклаза, 25 мас.% плавленого алюмомагнезального материала фракции 3-1 мм, вводят 1,6 мас.% пластификатора этиленгликоля по ГОСТ 19710-83, ведут капсулирование путем смешения до образования на поверхности зерен органической пленки, вводят 25 мас.% комплексного тонкомолотого наполнителя, который представлен: 65,1 мас.% плавленого периклаза, 19.1 мас.% графита марки +198, 6,3 маc.% электрокорунда марки 25А по ГОСТ 28818-90, 3,8 мас.% диоксида циркония марки ЦРО-1 по ГОСТ 21907-76, 5,7 маc.% алюминия порошкообразного марки АСД-1 по ГОСТ 51667-97, перемешивают, вводят 3,2 мас.% смолы фенольной порошкообразной марки 0125М по ТУ 2257-241-00293447-97, продолжают смешение до образования массы с насыпной плотностью 1,65 т/м, массу выгружают из смесителя и подвергают вылеживанию в течение 5 часов с эвакуацией газовых выделений, после чего формуют изделия. Свойства полученного таким образом изделия приведены в таблице.

Пример 3

В смеситель в поток огнеупорного зернистого наполнителя полифракционного состава в количестве 65,5 мас.%, состоящего из 45 мас.% плавленого периклаза, 25 мас.% плавленого алюмомагнезиального материала фракции 3-1 мм, вводят 1,5 мас.% пластификатора этиленгликоля по ГОСТ 19710-83, ведут смешение до образования на поверхности зерен органической пленки, вводят 30 мас.% комплексного тонкомолотого заполнителя, который представлен: 58,1 мас.% плавленого периклаза, 22,9 мас.% графита марки +198, 7,6 маc.% электрокорунда марки 25 А по ГОСТ 28818-90, 4,6 мас.% диоксида циркония марки ЦРО-1 по ГОСТ 21907-76, 6,8 мас.% алюминия порошкообразного марки АСД-1 по ГОСТ 51667-97, перемешивают, вводят 3,0 мас.% смолы фенольной порошкообразной марки 0125М по ТУ 2257-241-00293447-97, продолжают смешение до образования массы с насыпной плотностью 1,76 т/м, массу выгружают из смесителя и подвергают вылеживанию в течение 5 часов с эвакуацией газовых выделений, после формуют изделия. Свойства полученного таким образом изделия приведены в таблице.

Пример 4

В смеситель в поток огнеупорного зернистого наполнителя полифракционного состава в количестве 67,2 мас.%, состоящего из 50 мас.% плавленого периклаза, 22 мас.% плавленого алюмомагнезиального материала фракции 3-1 мм, вводят 1,3 мас.% пластификатора этиленгликоля по ГОСТ 19710-83, ведут смешение до образования на поверхности зерен органической пленки, вводят 28 мас.% комплексного тонкомолотого заполнителя, который представлен: 60,8 мас.% плавленого периклаза, 21,4 мас.% графита марки +198, 7,1 маc.% электрокорунда марки 25А по ГОСТ 28818-90, 4,3 мас.% диоксида циркония марки ЦРО-1 по ГОСТ 21907-76, 6,4 мас.% алюминия порошкообразного марки АСД-1 по ГОСТ 51667-97, перемешивают, вводят 3,5 мас.% смолы фенольной порошкообразной марки 0125М по ТУ 2257-241-00293447-97, продолжают смешение до образования массы с насыпной плотностью 1,82 т/м, массу выгружают из смесителя и подвергают вылеживанию в течение 5 часов с эвакуацией газовых выделений, после чего формуют изделия. Свойства полученного таким образом изделия приведены в таблице.

Пример 5

В смеситель в поток огнеупорного зернистого наполнителя полифракционного состава в количестве 67,4 мас.%, состоящего из 59 мас.% плавленого периклаза, 13 мас.% плавленого алюмомагнезиального материала фракции 3-1 мм, вводят 1,4 мас.% пластификатора этиленгликоля по ГОСТ 19710-83, ведут смешение до образования на поверхности зерен органической пленки, вводят 28 мас.% комплексного тонкомолотого заполнителя, который представлен: 60,8 мас.% плавленого периклаза, 21,4 мас.% графита марки +198, 7,1 маc.% электрокорунда марки 25А по ГОСТ 28818-90, 4,3 мас.% диоксида циркония марки ЦРО-1 по ГОСТ 21907-76, 6,4 мас.% алюминия порошкообразного марки АСД-1 по ГОСТ 51667-97, перемешивают, вводят 3,2 мас.% смолы фенольной порошкообразной марки 0125М по ТУ 2257-241-00293447-97, продолжают смешение до образования массы с насыпной плотностью 1,80 т/м, массу выгружают из смесителя и подвергают вылеживанию в течение 5 часов с эвакуацией газовых выделений, после чего формуют изделия. Свойства полученного таким образом изделия приведены в таблице.

Пример 6

В смеситель в поток огнеупорного зернистого наполнителя полифракционного состава в количестве 73,9 мас.%, состоящего из 59 мас.% плавленого периклаза, 20% плавленого алюмомагнезиального материала фракции 3-1 мм, вводят 1,1% пластификатора этиленгликоля по ГОСТ 19710-83, ведут смешение до образования на поверхности зерен органической пленки, вводят 21 мас.% комплексного тонкомолотого заполнителя, который представлен: 70,6 мас.% плавленого периклаза, 16,1 мас.% графита марки +198, 5,3 мас.% электрокорунда марки 25А по ГОСТ 28818-90, 3,2 мас.% диоксида циркония марки ЦРО-1 по ГОСТ 21907-76, 4,8 мас.% алюминия порошкообразного марки АСД-1 по ГОСТ 51667-97, перемешивают, вводят 4,0 мас.% смолы фенольной порошкообразной марки 0125М по ТУ 2257-241-00293447-97, продолжают смешение до образования массы с насыпной плотностью 1,68 т/м3, массу выгружают из смесителя и подвергают вылеживанию в течение 5 часов с эвакуацией газовых выделений, после чего формуют изделия. Свойства полученного таким бразом изделия приведены в таблице.

Разработанные огнеупорные изделия под маркой ПШУП-1 прошли промышленные испытания в сталеразливочных ковшах. Износ в днище не превышал 2,0 мм/плавку, что в 2-3 раза меньше по сравнению с известными применяемыми огнеупорами.

Таблица 1

Термомеханические и эксплуатационные характеристики изделий
Пористость открытая, %Плотность (кажущаяся) г/см3Прочность при сжатии, Н/мм2Теплопроводность, Вт/м-К 800°Износ, % относительно прототипа
Пример 15,82.9849.34.7954.7
Пример 24,33.0558.34.8543.8
Пример 34,93.0153.15.2150.7
Пример 44,13.0761.74.9240.7
Пример 54,53.0255.65.6345.3
Пример 65,92.9850.36.0558.3
Прототип6,12.9548.511.5100

1. Состав массы карбонированных огнеупоров, включающий зернистый наполнитель, графит, тонкомолотый заполнитель, пластификатор, углеродсодержащую смолу, отличающийся тем, что вещественный состав представлен, мас.%:

Алюмомагнезиальный зернистый наполнитель 19,0-26,0

Тонкомолотый комплексный заполнитель 15,0-35,0

Пластификатор 0,9-1,6

Углеродсодержащая смола 2,9-3,8

Зернистый периклазовый наполнитель Остальное

причем комплексный тонкомолотый заполнитель представлен смесью, мас.%:

Периклаз 50,0-81,0

Графит 11,0-27,0

Корунд 3,0-9,0

Диоксид циркония 2,0-6,0

Al металлический 3,0-8,0

2. Способ образования массы карбонированных огнеупоров, включающий смешивание зернистого наполнителя, графита, комплексного тонкомолотого заполнителя, пластификатора, углеродсодержащей смолы, отличающийся тем, что в поток зернистого периклазового наполнителя вводят алюмомагнезиальный зернистый наполнитель - 19,0-26,0 мас.%, добавляют пластификатор - 0,9-1,6 мас.%, капсулируют поверхность зерен, вводят комплексный тонкомолотый заполнитель - 15,0-35,0 мас.%, перемешивают, добавляют 2,9-3,8 мас.% углеродсодержащей смолы, продолжают смешивание до образования карбонированной массы с насыпной плотностью 1,65-2,0 г/см3, выгружают из смесителя и подвергают вылеживанию не менее 3 ч для эвакуации газовых включений, продуктов реакций, после чего формуют изделия при усилии более 100 МПа, термообрабатывают при температуре выше 150°С.

3. Способ по п.2 отличающийся тем, что получают химический состав массы карбонированного огнеупора, мас.%: МgО - 65,0-82,0%, Al2O3 - 14,0-22,0%, С - 3,0-9,0%, сумма SiO2, СаО, Fе2O3 - не более 1,0-4,0%, при отношении СаО/SiO2>1,7.



 

Похожие патенты:

Изобретение относится к способу удаления органического связующего из сырой керамической формы путем окисления органического связующего. .

Изобретение относится к области производства формованных керамических материалов, которые могут быть использованы при добыче жидких и газообразных текучих сред из буровых скважин в качестве расклинивающего агента.

Изобретение относится к изготовлению огнеупорных изделий. .
Изобретение относится к области технической керамики и огнеупоров и может быть использовано для изготовления изделий, применяемых в электротехнике, машиностроении, химической и металлургической отраслях промышленности.

Изобретение относится к огнеупорной промышленности, в частности к способу получения изделий, применяемых в металлургии при разливке металлов, где предъявляются требования к характеристикам твердости и жаростойкости или относительной химической инертности.

Изобретение относится к области керамических медицинских материалов и может быть использовано при изготовлении искусственных костей и заполнителя костных дефектов в челюстно-лицевой хирургии.

Изобретение относится к электродной промышленности, в частности к технологии получения углеродных изделий высокой плотности. .

Изобретение относится к области получения огнеупорных порошков из высококарбонатных сырьевых материалов. .
Изобретение относится к способу получения керамических образцов на основе оксида ванадия V2О3 , легированного оксидом хрома Cr2О3. .

Изобретение относится к технологии производства керамических материалов и может быть использовано для получения легковесных высокопрочных керамических гранул сферической формы - пропантов, применяемых при гидроразрывах горных пород в качестве расклинивающего агента.

Изобретение относится к огнеупорной промышленности и может быть использовано для изготовления периклазошпинельных огнеупорных изделий, предназначенных для футеровки вращающихся и шахтных печей и других высокотемпературных агрегатов.

Изобретение относится к составу огнеупорного мертеля, предназначенного для приготовления кладочных растворов при изготовлении крупногабаритных огнеупорных изделий и футеровке тепловых агрегатов металлургической отрасли.

Изобретение относится к огнеупорной промышленности, а именно к производству углеродсодержащих огнеупоров на основе периклаза и алюмомагниевой шпинели для футеровки сталеплавильных, сталеразливочных и других металлургических агрегатов.

Изобретение относится к области производства огнеупоров для высокотемпературных агрегатов черной и цветной металлургии, химической промышленности и может быть использовано, в частности, для забивки зазоров на стыке футеровок, например, в установках внепечной обработки и вакуумирования стали.

Изобретение относится к огнеупорной промышленности и может быть использовано для изготовления магнезиально-шпинелидных огнеупоров (МШО), предназначенных для футеровки медеплавильных печей, а также подин нагревательных печей, нижнего строения мартеновских печей и т.д.

Изобретение относится к огнеупорной промышленности - к производству высокостойких огнеупоров для футеровки наиболее изнашиваемых участков тепловых агрегатов черной и цветной металлургии.

Изобретение относится к огнеупорной промышленности и может быть использовано для ремонта и футеровки металлургических агрегатов, в том числе промежуточных ковшей.

Изобретение относится к огнеупорной промышленности и может использоваться для ремонта и футеровки металлургических агрегатов, в том числе промежуточных ковшей, переливных и аварийных емкостей и т.п.

Изобретение относится к огнеупорной промышленности, а именно к производству магнезиальносиликатных безобжиговых и обожженных огнеупоров, используемых в футеровках конвертеров, в агрегатах внепечной обработки стали, сталеразливочных ковшах и печах цветной металлургии.

Изобретение относится к огнеупорной промышленности, а именно к огнеупорным массам, предназначенным для ремонта футеровки металлургических агрегатов, например горячего ремонта конвертера.
Наверх