Чувствительный элемент интегрального акселерометра

Изобретение относится к измерительной технике и может применяться при изготовлении интегральных акселерометров. Чувствительный элемент выполнен из проводящего монокристаллического кремния и содержит маятник 4, соединенный с помощью упругих подвесов 3 с каркасной кромкой 2, которая с помощью консольной балки 7 соединена с несущей рамкой 1. Рамка 1 площадками крепления жестко соединена с основанием акселерометра. За счет введения несущей рамки 1, которая вместо каркасной рамки 2 жестко соединяется с основанием, исключаются контактные напряжения в каркасной рамке 2, влияющие на точность прибора. 1 ил.

 

Изобретение относится к измерительной технике и может применяться в интегральных акселерометрах.

Известен чувствительный элемент интегрального акселерометра [1], который содержит маятник и упругие подвесы, соединяющие маятник с рамкой чувствительного элемента, которая непосредственно крепится к основанию.

Недостатком такого чувствительного элемента является низкая точность, связанная с влиянием контактных напряжений, возникающих в местах крепления рамки, на упругие подвесы маятника.

Известен также чувствительный элемент интегрального акселерометра [2], содержащий кремниевый проводящий маятник, соединенный с помощью упругих подвесов с рамкой, которая одновременно выполняет роль жесткого каркаса чувствительного элемента, при этом опорные крепления для анодного соединения чувствительного элемента с неподвижным основанием акселерометра расположены непосредственно на рамке.

Недостатком данного устройства является нестабильность смещения нулевого сигнала вследствие высокого уровня контактных напряжений, возникающих в местах расположения опор крепления, а следовательно, снижается точность прибора в целом.

Задачей, на решение которой направлено данное изобретение, является снижение влияния контактных напряжений в рамке чувствительного элемента и, как следствие, повышение точности акселерометра.

Для достижения поставленной задачи в чувствительный элемент интегрального акселерометра, содержащий кремниевый проводящий маятник, соединенный упругими подвесами с каркасной рамкой, введена дополнительная несущая рамка крепления, соединенная консольной балкой с каркасной рамкой и жестко соединенная с неподвижным основанием акселерометра.

Существенным отличием заявленного устройства по сравнению с известным является то, что несущая рамка крепления чувствительного элемента к неподвижному основанию и каркасная рамка, на которой подвешен маятник, соединены между собой посредством консольной балки, что исключает влияние контактных напряжений от мест крепления к упругим подвесам.

Предлагаемый чувствительный элемент интегрального акселерометра иллюстрируется чертежом.

Несущая рамка 1 с помощью консольной балки 7 соединена с каркасной рамкой 2. На каркасной рамке 2 с помощью упругих подвесов 3 подвешен маятник 4 в виде прямоугольной пластины. На маятнике 4 выполнены сквозные щели 5, расположенные крестообразно и предназначенные для подгонки коэффициента демпфирования. На каркасной рамке 2 размещены площадки 6 для соединения с неподвижными обкладками датчика перемещений (на чертеже неподвижные обкладки не показаны). Несущая рамка 1 жестко соединена с неподвижным основанием акселерометра с помощью площадок крепления (не показаны).

Устройство работает следующим образом. При действии ускорения вдоль оси, перпендикулярной к плоскости чертежа, маятник 4 поворачивается на угол, определяемый свойствами упругих элементов 3 и величиной измеряемого ускорения, и, измеряя отклонение маятника 4, можно судить о величине воздействующего ускорения.

Поскольку каркасная рамка 2 соединена с несущей рамкой 1 консольной балкой 7, то возможные напряжения, возникающие при изменении температуры, от точек крепления несущей рамки 7 к упругим подвесам 3 оцениваются следующей зависимостью:

где ν - коэффициент Пуассона; S - площадь контакта; у0 - толщина каркасной рамки; p - давление на контакт; L - расстояние от площадок крепления до заданного сечения.

Из формулы (1) видно, что путь распространения механических напряжений от площадок крепления несущей рамки 1 к неподвижному основанию до упругих подвесов 3 на каркасной рамке 2 увеличен. Соответственно величина механических напряжений около подвесов 3 снижается обратно пропорционально длине пути распространения. Отмеченные свойства подтверждают преимущества заявляемого изобретения перед известными решениями.

Источники информации

1. Паршин В.А., Харитонов В.И. Особенности технологии мультисенсорных датчиков с нелегированными упругими подвесами. //Датчики и системы. 2002. №2. С.22-24.

2. Мокров Е.А., Папко А.А. Акселерометры НИИ физических измерений – элементы микросистемотехники. //Микросистемная техника. 2002. №1. С.3-9 (прототип).

Чувствительный элемент интегрального акселерометра, содержащий кремниевый проводящий маятник, соединенный упругими подвесами с каркасной рамкой, отличающийся тем, что в чувствительный элемент введена дополнительная несущая рамка крепления, соединенная консольной балкой с каркасной рамкой и жестко соединенная с неподвижным основанием акселерометра.



 

Похожие патенты:

Изобретение относится к измерительной технике, в частности к области приборостроения, и может найти применение в инерциальных системах подвижных объектов - преимущественно в малоразмерной авиационной и космической технике и др.

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике. .

Изобретение относится к измерительной технике и может быть использовано для контроля сейсмических колебаний морского дна. .

Изобретение относится к датчикам измерения ускорения движущегося объекта и может быть использовано в системах торможения различных транспортных средств. .

Изобретение относится к воспринимающему устройству для измерения положения, ускорения или гравитационного поля и компонентов его градиента, устройство включает в себя сферическую полость, которая содержит вещество датчика в виде текучей среды или иного инерционного материала, обладающего свойствами текучести.

Изобретение относится к измерительной технике, в частности к области приборостроения, и может найти применение в инерциальных системах подвижных объектов, в автопилотах авиа- и судомоделей и в системах безопасности транспортных средств.

Изобретение относится к измерительной технике и может быть использовано при решении задач навигации, управления, гравиметрии. .

Изобретение относится к измерительной технике и может применяться в микромеханических акселерометрах и гироскопах

Изобретение относится к области измерительной техники и интегральной электроники, а более конкретно - к интегральным измерительным элементам величины угловой скорости

Изобретение относится к измерительной технике, в частности к области приборостроения, и может найти применение в инерциальных системах подвижных объектов, в автопилотах авиа- и судомоделей и в системах безопасности транспортных средств

Изобретение относится к устройствам и системам для оценки состояния поверхности взлетно-посадочных полос (ВПП) аэродромов, но может также использоваться для определения коэффициента сцепления дорожных покрытий

Изобретение относится к измерительной технике и может применяться для создания микромеханических акселерометров и гироскопов

Изобретение относится к области машиностроения, в частности антиблокировочным системам автотранспортных средств

Изобретение относится к измерительной технике

Изобретение относится к измерительной технике и может быть использовано для создания микромеханических акселерометров и гироскопов

Изобретение относится к микроструктурным устройствам, содержащим гибкие элементы, в частности подвижные относительно друг друга электроды, что позволяет использовать их как датчики механических и термодинамических величин, таких как ускорение, температура и давление

Изобретение относится к области измерительной техники и микросистемной техники, а более конкретно к интегральным измерительным элементам величины угловой скорости
Наверх