Полупроводниковый детектор для регистрации сопутствующих нейтронам заряженных частиц в нейтронном генераторе со статическим вакуумом

Изобретение относится к области ядерной физики и может быть использовано для регистрации сопутствующих нейтронам заряженных частиц в нейтронном генераторе со статическим вакуумом. Сущность: в полупроводниковом детекторе для регистрации сопутствующих нейтронам заряженных частиц в нейтронном генераторе, включающем полупроводниковый регистрирующий элемент, размещенный в диэлектрическом корпусе, закрытый как со стороны потока заряженных частиц, так и с противоположной стороны слоями металла, электрически соединенными с токоотводами, токоотвод со стороны потока заряженных частиц выполнен в виде жесткой прижимной металлической пластины с отверстием напротив чувствительной зоны полупроводникового регистрирующего элемента, прикрепленной к диэлектрическому корпусу, а токоотвод с противоположной стороны выполнен в виде жесткой металлической пластины, поджатой пружинным элементом к полупроводниковому регистрирующему элементу, при этом диэлектрический корпус выполнен из вакуум-плотного материала, с газовой десорбционной способностью, не более 5· 10-8 мбар· см-2·с-1; корпус может быть выполнен из керамики. Технический результат изобретения: обеспечение возможности регистрации сопутствующих нейтронам заряженных частиц в нейтронном генераторе со статическим вакуумом при скорости регистрации до 107 частиц в секунду. 1 з.п. ф-лы, 3 ил.

 

Изобретение относится к области ядерной физики и может быть использовано для регистрации сопутствующих нейтронам заряженных частиц в нейтронном генераторе со статическим вакуумом.

Известны устройства, содержащие, по меньшей мере, один неорганический сцинтиллятор, нанесенный на оптическое стекло, и фотоэлектронный умножитель (ФЭУ). При этом сцинтиллятор(ы) находится в статическом вакууме нейтронного генератора, а ФЭУ - вне зоны вакуума, US 6297507.

Быстродействие и эффективность регистрации сопутствующих нейтронам заряженных частиц (чувствительность) этого устройства малы вследствие:

- недостаточной интенсивности свечения, вызванного прохождением через сцинтиллятор сопутствующих нейтронам заряженных частиц;

- поглощения части свечения самим сцинтиллятором;

- дополнительных потерь свечения в переходах сцинтиллятор - стекло - ФЭУ.

Устройство по причинам, изложенным выше, имеет быстродействие (максимальный счет сопутствующих заряженных частиц) порядка 104 частиц в секунду. Такой счет (регистрация) сопутствующих заряженных частиц и, следовательно, выделенных по направлению "меченых" нейтронов является недостаточным для практического использования в системе неразрушающего анализа, базирующейся на портативном нейтронном генераторе, см. "Associated particle imaging (API)", Report of Bechtel Nevada (BN) Special Technologies Laboratory (STL), USA, DOE/NV 11718-223, UC-700, May, 1998, http://www.osti.gov/dublincore/gpo/servlets/purl/304166-TEKYDQ/webviewable/304166.pdf.

Известен также полупроводниковый детектор для регистрации заряженных частиц, включающий полупроводниковый регистрирующий элемент, размещенный в диэлектрическом корпусе, выполненном из фольгированного стеклотекстолита, а также токоотводы. Полупроводниковый регистрирующий элемент закреплен в корпусе эпоксидным клеем. Электроды, выполненные в виде тонких слоев металла, одновременно нанесены на поверхности полупроводникового элемента и корпуса напылением. Токоотводы (электрические контакты) прикреплены к металлу корпуса пайкой, проводящим клеем или прижимом, см. Гаценко Л.С., Федосеева О.П. “Полностью обедненные дрейфовые детекторы”, “Приборы и техника эксперимента”, №4, июль-август, 1974, с.46-48 (копия ссылки прилагается). Данное техническое решение принято за прототип настоящего изобретения и может использоваться для регистрации сопутствующих нейтронам заряженных частиц в объеме постоянно откачиваемого вакуума генератора нейтронов (Арльт Р. и др. “Абсолютные измерения сечения деления 239Рu нейтронами энергией 8,5 МэВ”, “Атомная энергия”, том 57, вып.4, октябрь, 1984, с.249-251). В силу своей конструкции и материалов, из которых состоит устройство, оно не может быть использовано в ограниченном объеме со статическим (неоткачиваемым) вакуумом, в том числе, внутри статического вакуума нейтронного генератора. Это объясняется тем, что процесс получения статического вакуума требует высокотемпературного удаления газов, связанного с нагревом всей конструкции при непрерывном откачивании вакуумного объема вместе с устройством, помещенным в этот объем, до температур порядка 400° С в течение 10-12 часов. При таких температурах электрические контакты, диэлектрическая изоляция и структура материалов устройства нарушаются вследствие разных температурных коэффициентов расширения или деградации самих материалов. Кроме того, материалы, из которых выполнено устройство, не являются вакуум-плотными, поэтому процесс длительной десорбции газа после отсечения вакуумного объема от откачивающего насоса приводит в дальнейшем к нарушению статического вакуума и отказу работы нейтронного генератора.

Изобретением решается задача обеспечения возможности регистрации сопутствующих нейтронам заряженных частиц в нейтронном генераторе со статическим вакуумом при скорости регистрации до 107 частиц в секунду. Для этого устройство должно быть устойчиво к нагреву до 400° С при откачивании вакуумной системы нейтронного генератора перед его запаиванием, нечувствительно к свечению как пучка, так и рассеянных на мишени нейтронного генератора ионов дейтерия (трития), устойчиво к высоким потокам заряженных частиц и нейтронов (до 106 частиц в секунду через 1 см2 поверхности), обладать малой десорбционной способностью, а также иметь слабую чувствительность к нейтронному, гамма-, рентгеновскому и электромагнитному излучениям.

Согласно изобретению эта задача решается за счет того, что в полупроводниковом детекторе для регистрации сопутствующих нейтронам заряженных частиц в нейтронном генераторе, включающем полупроводниковый регистрирующий элемент, размещенный в диэлектрическом корпусе, закрытый как со стороны потока заряженных частиц, так и с противоположной стороны слоями металла, электрически соединенными с токоотводами, токоотвод со стороны потока заряженных частиц выполнен в виде жесткой прижимной металлической пластины с отверстием напротив чувствительной зоны полупроводникового регистрирующего элемента, прикрепленной к диэлектрическому корпусу, а токоотвод с противоположной стороны выполнен в виде жесткой металлической пластины, поджатой пружинным элементом к полупроводниковому регистрирующему элементу, при этом диэлектрический корпус выполнен из вакуум-плотного диэлектрического материала с газовой десорбционной способностью не более 5· 10-8 мбар· см-2·с-1; благодаря этому, практически, исключается искажение статического вакуума в течение полного цикла работы вакуумной трубки нейтронного генератора; корпус может быть выполнен из керамики.

Большая площадь контакта токоотвода с проводящими металлическими слоями полупроводникового регистрирующего элемента, обеспечиваемая в том числе и за счет механического прижима (давления), компенсирует расширение элементов устройства при высокотемпературном нагреве и предотвращает механические повреждения полупроводникового элемента; области полупроводникового элемента, чувствительные к свету и радиационным повреждениям, закрыты керамическим корпусом и находятся на стороне устройства, противоположной мишени нейтронного генератора.

Сущность изобретения поясняется чертежами, где изображено:

на фиг.1 - схема нейтронного генератора с размещенным в нем полупроводниковым детектором;

на фиг.2 - полупроводниковый детектор в разрезе;

на фиг.3 - вариант, предусматривающий агрегацию из трех детекторов, объединенных в общем корпусе.

Полупроводниковый детектор 1 для регистрации сопутствующих нейтронам заряженных частиц в нейтронном генераторе 2 включает полупроводниковый регистрирующий элемент 3. В конкретном примере элемент 3 выполнен из кремния с проводимостью n-типа. Элемент 3 размещен в корпусе 4, выполненном из вакуум-плотного диэлектрического материала с газовой десорбционной способностью не более 5· 10-8 мбар· см-2·с-1; вакуум-плотным материалом считается материал, обеспечивающий длительное сохранение заданной глубины вакуума, что обусловлено как его текстурой, так и минимальным выделением газов (газовой десорбционной способностью).

В рассматриваемом примере корпус выполнен из диэлектрического вакуум-плотного материала - керамики ХС-22. Полупроводниковый регистрирующий элемент 3 закрыт со стороны потока сопутствующих нейтронам заряженных частиц и с противоположной стороны, соответственно, слоями 5 и 6 металла, в частности алюминия, толщиной 1 мкм. Слой 5 электрически соединен с токоотводом, выполненным в виде жесткой прижимной пластины 7 с отверстием 8 напротив чувствительной (центральной) зоны элемента 3. Пластина 7 прикреплена к корпусу 4 крепежными элементами 9. Одним из этих элементов закрепляется контактный элемент 10, выполненный из никелевой проволоки. Токоотвод с противоположной стороны представляет собой сплошную жесткую металлическую пластину 11, поджатую пружинным элементом 12 к слою 6 полупроводникового регистрирующего элемента 3. К пластине 11 прикреплен контактный элемент 13 из никелевой проволоки. В объеме 14 статического вакуума нейтронного генератора размещена мишень 15, содержащая ионы трития, а также источник 16 ионов дейтерия.

Возможен также конструктивный вариант объединения нескольких полупроводниковых детекторов в общий корпус (фиг.3).

Устройство работает следующим образом. Пучок ионов дейтерия от источника 16 попадает на мишень 15. В результате ядерной реакции образуется нейтроны с энергией 14 МэВ и сопутствующие им заряженные альфа-частицы с энергией 3,2 МэВ. Направление сопутствующей нейтрону альфа-частицы всегда противоположно направлению нейтрона. Заряженная частица, попадая в полупроводниковый регистрирующий элемент 3, производит ионизацию внутри него, что приводит к протеканию тока через него и появлению быстрого (порядка наносекунд) электрического сигнала на токоотводах. Регистрация сопутствующих заряженных частиц состоит в съеме с полупроводникового регистрирующего элемента быстрого (длительностью порядка 5-10 наносекунд) электрического сигнала, который выводится наружу из статического вакуума и поступает на регистрирующую аппаратуру. Устройство имеет быстродействие до 107 частиц в секунду, что позволяет увеличить скорость регистрации сопутствующих нейтронам заряженных частиц в 1000 раз и во столько же раз увеличить поток выделенных по направлению "меченых" нейтронов по сравнению с устройствами, выполненными на базе сцинтилляторов, а в сравнении с устройством-прототипом заявленное устройство позволяет регистрировать сопутствующие нейтронам заряженные частицы в нейтронном генераторе со статическим вакуумом.

Данный полупроводниковый детектор прошел испытания на нейтронных генераторах со статическим вакуумом. Суммарное число зарегистрированных заряженных частиц составляет 1013.

1. Полупроводниковый детектор для регистрации сопутствующих нейтронам заряженных частиц в нейтронном генераторе со статическим вакуумом, включающий полупроводниковый регистрирующий элемент, размещенный в диэлектрическом корпусе, закрытый как со стороны потока заряженных частиц, так и с противоположной стороны слоями металла, электрически соединенными с токоотводами, отличающийся тем, что токоотвод со стороны потока заряженных частиц выполнен в виде жесткой прижимной металлической пластины с отверстием напротив чувствительной зоны полупроводникового регистрирующего элемента, прикрепленной к диэлектрическому корпусу, а токоотвод с противоположной стороны выполнен в виде жесткой металлической пластины, поджатой пружинным элементом к полупроводниковому регистрирующему элементу, при этом диэлектрический корпус выполнен из вакуум-плотного материала с газовой десорбционной способностью не более 5· 10-8 мбар· см-2·с-1.

2. Полупроводниковый детектор по п.1, отличающийся тем, что корпус выполнен из керамики.



 

Похожие патенты:

Изобретение относится к фторполимеризующимся композициям для сухих пленочных фоторезистов водно-щелочного проявления, находящих применение для получения рисунка при изготовлении печатных плат в радиоэлектронной промышленности.

Изобретение относится к технике электроизмерений. .

Изобретение относится к полупроводниковой технике и может быть использовано для регистрации и измерения потока ИК-излучения. .

Изобретение относится к электротехнике, в частности к конструированию фотоэлектрических потенциометров для следящих систем, и может быть использовано при изготовлении датчиков угловых и линейных перемещений для устройств автоматики и вычислительной техники.

Изобретение относится к усилителям оптических сигналов и может использоваться в системах оптической обработки информации и в волоконно-оптических линиях связи (ВОЛС).

Изобретение относится к полупроводниковым приборам, чувствительным к ИК-излучению. .

Изобретение относится к полупроводниковым детекторам ядерных излучений. .

Изобретение относится к области разработки приборов для геофизических исследований скважин, в частности скважинных генераторов нейтронов. .

Изобретение относится к области устройств для создания пучков меченых нейтронов, а именно, отпаянных нейтронных генераторов и может быть использовано в системах оперативного неразрушающего дистанционного анализа сложных химических веществ и в ядерно-физических установках, где требуется регистрация высокоинтенсивных потоков заряженных частиц.

Изобретение относится к области прикладной ядерной геофизики, а более конкретно к группе геофизических методов, предназначенных для количественной оценки содержания радиационно-активных элементов в естественном залегании, и может быть использовано в рудной и газонефтяной геологии и геофизике, горной промышленности и других областях.

Изобретение относится к измерению пористости образования. .
Изобретение относится к области ядерной геофизики и может быть использовано при геологической разведке алмазоносных месторождений для обнаружения алмазной породы (алмазов) в стенке (пристенном пространстве) разведочной скважины.

Изобретение относится к области промысловой геофизики, а более конкретно к группе ядерно-геофизических методов исследования природных сред, и может быть использовано для геологических разрезов рудных, угольных, нефтяных, газовых и др.

Изобретение относится к области ядерной геофизики, а именно к группе геофизических методов, предназначенных для определения характера насыщения коллекторов в условиях осолоненных пластовых вод по нейтронным характеристикам природных сред, и может быть использовано в газонефтяной геологии.

Изобретение относится к области промысловой геофизики, в частности к методам нейтрон-нейтронного и гидродинамического каротажа коллекторов нефти и газа, осложненных зонами проникновения промывочной жидкости.
Наверх