Способ контроля сшивки полиэтиленовой кабельной изоляции

Способ предназначен для проверки качества сшивания полиэтиленовой кабельной изоляции и полиэтиленовой изоляции самонесущего изолированного провода. Образец помещают на поверхность вращающегося диска. Над поверхностью диска располагают экранированный игольчатый коронирующий электрод и измерительный электрод. Поляризуют полярные С-Н связи полиэтиленовой изоляции в коронном разряде. Измеряют напряжение электрической индукции на измерительном электроде и регистрируют электретную разность потенциалов, возникающую при поляризации образца. Степень сшивания определяют по формуле: К=ΔVэ/Vэ, где ΔVэ - уменьшение электретной разности потенциалов за счет уменьшения концентрации полярных С-Н связей в результате сшивания полиэтиленовой изоляции, Vэ - электретная разность потенциалов для несшитой полиэтиленовой изоляции. Способ позволяет повысить скорость и точность определения степени сшивания электроизоляционного полиэтилена без использования токсичных материалов. 1 табл., 4 ил.

 

Предлагаемое изобретение относится к электроизмерительной и кабельной технике и может быть использовано в кабельной промышленности для проверки качества сшивания полиэтиленовой кабельной изоляции и полиэтиленовой изоляции самонесущего изолированного провода.

Известен способ контроля степени сшивки полиэтиленовой кабельной изоляции с помощью измерения степени растворимости кабельного полиэтилена после длительного пребывания в горячем параксилоле [1]. При оценке степени сшивки по этому способу образцы кабельной изоляции подвергают размельчению предварительному взвешиванию, после чего на длительное время (порядка 8 часов) помещают в горячий параксинлол, который выступает в качестве растворителя полиэтилена. После длительного растворения в параксилоле нерастворившийся остаток полиэтилена высушивают и взвешивают на аналитических весах. О степени сшивки полиэтилена судят по потере веса образца после растворения.

Этот метод обладает одним существенным недостатком - большой длительностью проведения измерений и высокой токсичностью параксилола, используемого в качестве растворителя.

Известен способ оценки степени сшивки кабельного полиэтилена по результатам испытания образцов изоляции на разрыв (определение прочности по Вика) [2]. При оценке степени сшивки по этому способу из образцов кабельной изоляции вырезаются специальные заготовки (в виде лопаточек). Образцы кабельной изоляции одним концом закрепляются на специальные крепления в термостате, а со стороны второго конца к ним на зажиме прикрепляется груз определенного веса. Под действием силы веса при определенной температуре в термостате после некоторого времени пребывания образцы изоляции разрываются. О степени сшивания полиэтиленовой изоляции судят по времени пребывания изоляции в термостате под нагрузкой.

Существенным недостатком этого метода является длительность проведения испытаний.

Ближайшим аналогом является способ определения электрических параметров полимерной кабельной изоляции, который может быть использован для определения концентрации электрически активных центров захвата в полимерной кабельной изоляции [3]. Сущность его заключается в поляризации кабельной изоляции в поле коронного разряда с последующим определением электрической прочности Епр, времени релаксации τ и проводимости кабельной изоляции γ .

Недостатком известного способа является неточность определения контроля.

Задачей предлагаемого изобретения является создание способа, позволяющего наиболее точно определить степень сшивания электроизоляционного полиэтилена.

Поставленная задача достигается тем, что в способе контроля сшивки полиэтиленовой кабельной изоляции, включающем помещение испытуемого образца на поверхность вращающего диска, воздействие электромагнитным полем на испытуемый образец, регистрацию максимального значения электретной разности потенциалов при поляризации этого образца в электромагнитном поле коронного разряда, осуществляют поляризацию полярных С-Н связей полиэтиленовой изоляции в коронном разряде с приложением высокого отрицательного напряжения на игольчатый коронирующий электрод, индуцированное напряжение от измерительного электрода измеряют с помощью электронно-лучевого осциллографа в условиях непрерывной поляризации, а заключение о степени сшивания полиэтиленовой кабельной изоляции К получают путем сравнения амплитуд индуцированных импульсных напряжений Vэ, сформированных от образца кабеля с несшитой изоляцией и исследуемого образца, степень сшивания определяют по формуле:

где Δ Vэ - уменьшение электретной разности потенциалов за счет уменьшения концентрации полярных связей С-Н в результате сшивания ПЭ;

Vэ - электретная разность потенциалов для несшитой кабельной ПЭ изоляции.

Экспериментально установлено, что полярные С-Н связи в полиэтилене могут выступать в качестве электрически активных центров захвата электронов и они определяют электретную поляризацию полиэтилена.

Величина электретной разности потенциалов для заполяризованного в коронном разряде образца полиэтиленовой кабельной изоляции определяется концентрацией центров захвата N, глубиной проникновения заряженных частиц из коронного разряда δ и толщиной поляризуемой изоляции h:

Здесь А - геометрический фактор поляризация-измерение, зависящий от межэлектродных расстояний.

Из уравнения (1) следует, что при постоянных значениях геометрического фактора А, толщины изоляции h, глубины проникновения δ величина электретной разности потенциалов Vэ зависит только от концентрации центров захвата N.

В качестве центров захвата носителей заряда в полиэтилене выступают боковые полярные группы С-Н полимерной макромолекулы (фиг.1).

Полярные группы С-Н в полиэтилене обладают дипольным моментом 0,4 Д и по этой причине способны удерживать носители заряда и создавать электретную поляризацию.

Из фиг.2 видно, что при сшивании полиэтилена происходит уменьшение концентрации полярных боковых групп С-Н, которые замещаются неполярными С-С группами.

Неполярные группы С-С неспособны захватывать носители заряда, поскольку дипольный момент для них равен нулю. По этой причине становится очевидно, что в результате сшивки полиэтилена в нем уменьшается количество полярных боковых групп С-Н, которые замещаются неполярными группами С-С. Все эго в свою очередь приводит к уменьшению концентрации центров захвата носителей заряда и уменьшению поляризуемости ПЭ после сшивания.

Способ осуществляется следующим образом:

Блок-схема установки для измерения степени сшивки кабельного полиэтилена представлена на фиг.3. Основными элементами ее являются: коронирующий электрод 1; диэлектрический экран 2; вращающийся диск с закрепленным исследуемыми образцами электрического кабеля 3; измерительный электрод 4; металлическая или диэлектрическая емкость 5; источник компенсирующего напряжения 6; электронный осциллограф 7; электродвигатель 8; источник питания электродвигателя 9; источник постоянного высокого напряжения 10. Разделительный конденсатор С 11 служит для предотвращения попадания компенсирующего напряжения от источника 6 на вход электронного осциллографа 7. Резистор R12 ограничивает возможные токи короткого замыкания в цепи источника компенсирующего напряжения 6. Частотомер 13 служит для контроля скорости вращения электродвигателя.

Исследуемые образцы в виде отрезков кабеля одинаковой длины закрепляют на поверхности металлического вращающегося диска в специальные крепления, имеющие строго калиброванные одинаковые отверстия. Таких креплений может быть несколько, в зависимости от количества одновременно исследуемых образцов кабеля. Поляризация кабельной изоляции осуществляется в процессе движения кабелей в поле коронного разряда. На коронирующий электрод подают отрицательное высокое напряжение. В процессе поляризации кабеля носители заряда из коронного разряда инжектируются на ловушки в тонкий приповерхностный слой материала. Величина накапливаемого абсорбционного заряда при этом определяется согласно (1) концентрацией центров захвата и глубиной проникновения носителей.

Рассмотрим предлагаемую нами индукционную модель формирования импульсного сигнала.

В силу принципа электростатической индукции электронным осциллографом 7 измеряется напряжение на измерительном электроде, которое возникает за счет индукционного тока, протекающего через измерительный конденсатор. Величина этого напряжения зависит от напряженности поля вблизи поверхности измерительного электрода E1, диэлектрической проницаемости вмещающей среды ε 1, скорости изменения площади перекрытия поверхности образца с поверхностью измерительного электрода S, скорости изменения напряженности электрического поля dE1/dt вблизи поверхности измерительного электрода, а также от толщины слоя диэлектрика h2 и расстояния между поверхностями диэлектрика и измерительного электрода h1

Слагаемые с dE1/dt и dS/dt получают максимальные значения только при возникновении и при исчезновении перекрытия между поверхностями измерительного электрода и исследуемого диэлектрика.

Для решения уравнения (2) воспользуемся следующими граничными условиями:

Выразим E1 через поверхностную плотность абсорбционного заряда σ .

Из (1) и (2) получаем выражение для напряжения V на входе осциллографа:

Выражение (4) получено в предположении, что ε 1h2&λτ;&λτ;ε2h1. Это условие, как правило всегда выполняется при измерениях, поскольку расстояние до измерительного электрода h1 всегда выбирается значительно больше толщины изоляции h2:

Из (4) видно, что амплитуда импульсного напряжения на экране электронно-лучевого осциллографа является величиной, пропорциональной плотности заряда на поверхности кабельной изоляции, т.е. пропорциональной электретной разности потенциалов Vэ.

Если на поверхности вращающегося диска закрепить два образца кабеля, имеющего одинаковые геометрические размеры-(например одинаковые куски самонесущего провода СИП-1 и СИП-2, имеющего изоляцию из сшитого и несшитого полиэтилена), то по величине напряжения, измеряемого с помощью электронно-лучевого осциллографа можно проконтролировать концентрацию центров захвата в полиэтиленовой изоляции и таким образом оценить степень сшивки кабельного полиэтилена.

Пример

Для испытаний выбирают образцы самонесущего изолированного провода, подвергавшиеся (провод СИП-2) и не подвергавшиеся (провод СИП-1) специальному сшиванию в кипящей водной среде в течение 8 часов.

Образцы самонесущего изолированного провода СИП-1 И СИП-2, имеющие одинаковую длину 40 мм и диаметр 10 мм, закрепляются в крепления на заземленной металлической поверхности диска, который может вращаться с постоянной скоростью ω . Кабели могут быть закреплены либо в радиальном направлении, либо по касательной к направлению вращательного движения.

На расстоянии 40 мм от поверхности заземленного диска закрепляется круглый плоский медный хромированный электрод, подключаемый к двухлучевому осциллографу С1-114.

Вся измерительная система помещена в металлический корпус и заземлена.

На обмотку электродвигателя подается постоянное напряжение, и диск с размещенными на нем образцами кабельной продукции начинает вращаться.

На игольчатый коронирующнй электрод подают высокое выпрямленное напряжение 10 кВ (трансформатор АИИ-70 с выпрямителем).

На экране электронно-лучевого осциллографа регистрируется индуцированное импульсное напряжение от первого и второго провода соответственно, которое регистрируется цифровым фотоаппаратом Olympus С-120(Фиг.4). Измерения производят в условиях непрерывной поляризации без отключения высокого напряжения.

Результаты оценки степени сшивки полиэтиленовой кабельной изоляции представлены на фиг.4. Из него видно, что амплитуда индуцированного напряжения Δ Vэ для сшитой изоляции (провод СИП-2) оказывается примерно на 50% меньше амплитуды индуцированного напряжения Vэ от изоляции из несшитого полиэтилена (провод СИП-2).

Таким образом 50% от всех полярных С-Н связей ПЭ были заменены неполярными С-С связями в результате операции сшивания, что вызвало соответствующее уменьшение поляризации полиэтилена.

В табл.1 представлены результаты оценки степени сшивки кабельной изоляции из сшитого полиэтилена, определенные традиционным методом растворения в параксилоле и предлагаемым методом поляризации в коронном разряде.

Таблица 1.

Оценка степени сшивки изоляции из сшитого полиэтилена (самонесущий изолированный провод СИП-2)
Оценка степени сшивки ПЭ методом растворения в параксилоле, Δ Р/Р,%10184070
Оценка степени сшивки ПЭ методом поляризации, Δ Vэ/Vэ, %9153870

Из таблицы видно хорошее соответствие между величинами, получаемыми традиционным и поляризационным методом, однако результаты поляризационным методом получаются значительно быстрее и без использования токсичных материалов.

Предлагаемый способ позволяет повысить точность контроля определения степени сшивания электроизоляционного полиэтилена.

Источники информации, принятые во внимание

1. Композиция полиэтилена высокого давления силанольносшивающаяся для изоляции силовых кабелей. Технические условия ТУ 301-05-184-92. ОАО Иркутсккабель.

2. Композиции полиэтилена высокого давления силаносшивающиеся. Технические условия ТУ 301-05-131-91. ОАО Иркутсккабель.

3. Патент РФ № 2915002, G 01 R 31/12, 2002 г..

Способ контроля сшивки полиэтиленовой кабельной изоляции, включающий помещение испытуемого образца на поверхность вращающегося диска, воздействие электромагнитным полем на испытуемый образец, регистрацию максимального значения электретной разности потенциалов при поляризации этого образца в электромагнитном поле коронного разряда, отличающийся тем, что осуществляют поляризацию полярных С-Н связей полиэтиленовой изоляции в коронном разряде с приложением высокого отрицательного напряжения на игольчатый коронирующий электрод, индуцированное напряжение от измерительного электрода измеряют с помощью электронно-лучевого осциллографа в условиях непрерывной поляризации, а заключение о степени сшивания полиэтиленовой кабельной изоляции получают путем сравнения амплитуд индуцированных импульсных напряжений Vэ, сформированных от образца кабеля с несшитой изоляцией и исследуемого образца, степень сшивания определяют по формуле

где ΔVэ - уменьшение электретной разности потенциалов за счет уменьшения концентрации полярных связей С-Н в результате сшивания полиэтиленовой изоляции,

Vэ - электретная разность потенциалов для несшитой кабельной полиэтиленовой изоляции.



 

Похожие патенты:

Изобретение относится к электрохимическому способу определения оксидантной/антиоксидантной активности веществ. .

Изобретение относится к аналитической технике, а именно к способам определения содержания вредных примесей (в частности, серы) в нефтепродуктах. .

Изобретение относится к дефектоскопии горных пород путем исследования электромагнитных полей, излучаемых породами при разрушении. .

Изобретение относится к детектированию пластиков и других веществ с использованием диэлектрокинеза (фореза) и, в частности, к детектированию конкретных пластиков, полимеров и других органических и неорганических веществ с помощью детектирования выброса тока электродинамической реакции на механически вынужденную обратную силу диэлектрофореза.

Изобретение относится к области текстильного производства и может быть использовано на прядильных, ткацких и т.п. .

Изобретение относится к физической химии, а именно к средствам исследования поверхностных процессов, протекающих на границе твердое тело - жидкость, содержащим поверхностно-активные вещества-присадки, в частности к определению адсорбционных свойств жидких углеводородов, таких как топливо, масла и их смеси, при контакте с металлом, что необходимо, например, для определения смазывающих характеристик смазок, топлива.

Изобретение относится к измерительной технике и предназначено для измерения влажности сыпучих веществ, например сахара, зерна, древесных опилок, стирального порошка и т.п.

Изобретение относится к способу определения слоя органического раствора, находящегося совместно с водным раствором в исследуемом растворе, включающему проведение экстракции-реэкстракции между вводимым в органический раствор водным раствором и органическим раствором и определение возникающей разности потенциалов, по которой судят о наличии слоя органического раствора.

Изобретение относится к измерительной технике и может быть использовано для определения содержания влаги в топливе на нефтяной основе. .

Изобретение относится к области измерительной техники и может быть использовано при исследовании двухфазных потоков в качестве датчика наличия пара или капель

Изобретение относится к области измерительной техники, а именно диагностики технического состояния газотурбинных двигателей в процессе их производства, испытаний и эксплуатации

Изобретение относится к неразрушающим методам контроля качества изоляционного материала и может быть использовано при изготовлении и исследовании новых полимерных материалов, изготовлении и контроле качества морозостойких электроизоляционных материалов

Изобретение относится к области машиностроения, в частности к двигателестроению, и может быть использовано для оперативного контроля засоренности фильтрующего элемента и сигнализации о возрастании загрязненности фильтра до заданного критического значения, служащего критерием для его замены или очистки

Изобретение относится к электрохимии и может быть использовано для определения работы выхода электрона из проводников в вакуум в гальванической ячейке

Изобретение относится к резонансной радиоспектроскопии, в частности к применению метода протонного магнитного резонанса (ПМР) для оперативного контроля концентрации серосодержащих соединений в нефти и нефтепродуктах при нефтедобыче, нефтепереработке и использовании на объектах энергетики

Изобретение относится к области измерительной техники, предназначено для измерения электрического заряда движущихся частиц минералов, в частности для обнаружения алмазов в алмазосодержащих смесях минералов, для их последующего извлечения с помощью исполнительного механизма

Изобретение относится к измерительной технике
Наверх