Армированная массивная шина

Изобретение относится к области конструирования и изготовления резиновых массивных шин, предназначенных для колесного безрельсового авто-, электротранспорта. Армированная шина содержит, по крайней мере, протекторную и посадочную части и армирующие кольца. Посадочная часть шины выполнена из резинового массива, армированного хаотично ориентированными обрезками волокон корда, внутри которого размещены армирующие кольца, оси которых совпадают с осью установочной поверхности посадочной части, образованной двумя сходящимися конусными поверхностями, обращенными вершинами друг к другу, причем армирующие кольца установлены на соответствующую поверхность ступицы с натягом, допускающим передачу крутящего момента. Приведены математические зависимости крутящего момента от силы натяга и параметров шины. Кроме того, армирующие кольца могут быть выполнены в виде подвулканизированных бухт проволоки, а направление навивки бухт проволоки может быть различным. Технический результат - снижение стоимости изготовления шин и определение соотношения всех параметров шины для возможности выбора их наилучшего сочетания. 3 з.п. ф-лы, 1 ил.

 

Заявляемое изобретение относится к области конструирования и изготовления резиновых массивных шин, предназначенных для колесного безрельсового авто- электротранспорта.

Для оснащения промышленного транспорта, используемого при перевозке грузов внутри предприятий по дорогам и проездам с деревянным, бетонным, металлическим покрытием, когда требуется грузоподъемность, маневренность, устойчивость, высокая стойкость к порезам и проколам, применяют массивные шины.

Как правило, безбандажные массивные шины представляют собой сплошное резиновое кольцо, иногда армированное в зоне посадочной части металлокордом. При монтаже кольцо напрессовывается на колесо с натягом [1].

Аналогичная по конструкции шина, содержащая внутри кольцевого элемента хотя бы один виток жесткого элемента, воспринимающего растягивающие усилия и проходящего внутри литого резинового кольца, образующего массив шины, на расстоянии от его внутренней, наружной и боковых стенок, описана в [2]. Металлокорд может располагаться и вблизи зоны беговой поверхности шины [З].

Предусмотренные ГОСТ 5883-89 [1] шины безбандажного типа содержат соединенный в кольцо металлокорд, находящийся внутри кольцевого резинового массива. При их производстве для надежного крепления шины на колесе необходимо обеспечить высокую прочность связи резины с металлокордом (не менее 4,4 кН/м в соответствии с п.1.3.3 ГОСТ 5883-89), что требует применения дорогостоящего латунированного металлокорда и использования для изготовления массива шины смесей с высоким (до 40 и более %) содержанием бутадиен-метилстирольного синтетического каучука СКСМ при незначительном (около 5%) использовании отходов резинового производства в виде регенерата РШ [4, с.52].

Возможность отслойки металлокорда в процессе эксплуатации, а также вызванная невозможностью широкого использования вторичного сырья высокая стоимость смеси для производства шин соответственно снижает их эксплуатационную надежность и повышает стоимость производства, что снижает конкурентоспособность изделий.

Аналогичными недостатками отличаются выпускаемые отечественной промышленностью безбандажные шины [5], соответствующие ТУ 104224-75, предназначенные для электрокар, электропогрузчиков, зерноочистительных машин, представляющие собой резиновый армированный массив в виде кольца, одеваемого на обод.

Указанными выше недостатками, выраженными в снижении эксплуатационной надежности и повышении стоимости изготовления в связи с возможностью отслойки металлокорда, и малой долей вторичного сырья, используемого при приготовлении резиновой смеси, отличается и массивная шина с наружной беговой и внутренней гладкой цилиндрической посадочной частью, армированная проволочными кольцами, показанная на рис.19д книги [4].

Последняя конструкция по своей технической сущности может быть принята в качестве прототипа.

Задачей, решаемой предлагаемым изобретением, является снижение стоимости изготовления шин и определение соотношения всех параметров шины для возможности выбора их наилучшего сочетания.

Для решения этой задачи в известной массивной шине, содержащей, по крайней мере, протекторную и посадочную части и армирующие кольца, последняя выполнена из резинового массива армированного хаотично ориентированными обрезками волокон корда, внутри которого размещены армирующие кольца, оси которых совпадают с осью установочной поверхности, образованной двумя сходящимися конусными поверхностями, обращенными вершинами друг к другу с возможностью установки на соответствующую поверхность ступицы с натягом и передачей крутящего момента, связанного с основными параметрами шины соответствующими соотношениями.

При этом армирующие кольца выполнены в виде сплошных колец или подвулканизированных бухт проволоки. Возможно разное направление навивки проволоки у соседних колец для равноценности передачи момента на прямом и обратном ходу транспортного средства.

На чертеже изображен чертеж заявляемой шины.

Шина содержит резиновый массив, образованный протекторной частью 1 и посадочной частью 2, выполненный из резины разных сортов. При этом посадочная часть, выполненная в виде резинового массива, армирована хаотично ориентированными обрезками корда, внутри которого размещены армирующие кольца 3, оси которых совпадают с осью установочной посадочной поверхности, образованной двумя сходящимися конусными поверхностями, допускающими передачу требуемого крутящего момента Мкр при определенной силе натяга Тнат, которые могут быть рассчитаны из следующих соотношений:

где [σθ] - допустимые тангенциальные напряжения в армирующем кольце, кг/мм2,

b - ширина кольца, мм,

RH - наружный радиус кольца, мм,

R - радиус ступицы в месте расположения армирующего кольца, мм,

n - число армирующих колец,

Ктр - коэффициент трения посадочной части шины по ступице,

Кn - коэффициент пропорциональности,

α - угол конуса посадочной поверхности, град.

При этом армирующие кольца могут быть выполнены сплошными, составными, навитыми из проволоки. В последнем случае бухту навитой проволоки предварительно подвулканизируют и заделывают внутрь резинового массива при формовке шины, наполненного хаотично ориентированными обрезками волокон корда, которые повышают адгезию армирующих колец к резине и увеличивают прочность самого массива.

Устройство работает следующим образом.

Во время движения транспортного средства основной задачей ведущих колес является передача крутящего момента Мкр со ступицы на шину. А поскольку эта передача осуществляется за счет сил трения, то пара шина - ступица должны иметь достаточный коэффициент трения Ктр и нормальные радиальные силы Трад, возникающие в момент напрессовки шины на конусную поверхность ступицы. В шине также возникают растягивающие тангенциальные усилия, стремящиеся разорвать армирующие кольца, которые воспринимают на себя эту нагрузку. Прочность этих колец зависит от материала, из которого они изготовлены, и определяются допустимыми напряжениями растяжения [σθ]. Фактические напряжения σθ определяются усилием напрессовки (натяга) Тнат.

Между армирующими кольцами и посадочной поверхностью имеется слой резины, который во взаимодействии со ступицей определяет коэффициент трения, фактически - пары сталь - резина.

В момент приложения к колесу крутящего момента Мкр возникает тангенциальная сила трения Ттр, нагружающая армирующие кольца дополнительной тангенциальной нагрузкой, возникшей в момент напрессовки колеса на ступицу.

Таким образом, допустимые тангенциальные напряжения [σθ] "расходуются" на натяг шины на ступицу и на сопротивление крутящему моменту Мкр. Соотношение этих нагрузок учитывается коэффициентом пропорциональности Кn.

Приведенные формулы позволяют выбрать оптимальные размеры армирующих колец, рассчитать требуемую прочность их материала и определить допустимое усилие запрессовки шины на ступицу.

Список использованной литературы

1. Шины массивные резиновые. Технические условия. ГОСТ 5883-89.

2. Патент США №4446903.

3. Авт. свид. №369027.

4. Савосин B.C., Бограчев М.Л. Массивные шины. Конструкция, изготовление, эксплуатация. М.: Химия, 1981 (прототип).

1. Армированная шина, содержащая, по крайней мере, протекторную и посадочную части, и армирующие кольца, отличающаяся тем, что посадочная часть выполнена из резинового массива, армированного хаотично ориентированными обрезками волокон корда, внутри которого размещены армирующие кольца, оси которых совпадают с осью установочной поверхности посадочной части, образованной двумя сходящимися конусными поверхностями, обращенными вершинами друг к другу, причем армирующие кольца установлены на соответствующую поверхность ступицы с натягом, допускающим передачу крутящего момента.

2. Армированная шина по п.1, отличающаяся тем, что крутящий момент Мкр и сила натяга Тнат связаны с параметрами шины следующими соотношениями:

где [σθ] - допустимые тангенциальные напряжения в армирующем кольце, кг/мм2;

b - ширина кольца, мм;

Rh - наружный радиус армирующего кольца, мм;

R - радиус ступицы, мм;

n - число армирующих колец;

Ктр - коэффициент трения посадочной части шины по ступице;

Kп - коэффициент пропорциональности;

α - угол конуса посадочной поверхности, град;

Rкол - радиус колеса (шины), мм.

3. Армированная шина по п.1, отличающаяся тем, что армирующие кольца выполнены в виде подвулканизированных бухт проволоки.

4. Армированная шина по п.3, отличающаяся тем, что направление навивки бухт проволоки различное.



 

Похожие патенты:

Изобретение относится к ненадувным массивным шинам, выполненным из сплошного резинового монолита и используемым для напольного транспорта, например, для погрузчиков, штабелеров, электрокар и т.п.

Изобретение относится к шинной промышленности и может быть использовано в производстве колес для машин, работающих в условиях бездорожья, главным образом в сельском хозяйстве.

Изобретение относится к колесам транспортных средств. .

Изобретение относится к шинной промышленности и может быть использовано в ходовых системах транспортных средств, преимущественно сельскохозяйственного назначения.

Изобретение относится к транспортным средствам и может быть использовано для напольного транспорта. .

Изобретение относится к шинной промышленности и может быть использовано в ходовых системах транспортных средств, преимущественно сельскохозяйственного назначения.

Изобретение относится к области подъемно-транспортного оборудования, а именно к шинам транспортных средств подвесных канатных дорог. .

Изобретение относится к ненадувным массивным шинам, выполненным из сплошного резинового монолита и используемым для напольного транспорта, например для погрузчиков, штабелеров, электрокаров

Изобретение относится к конструкции колес большегрузных транспортных средств, эксплуатируемых в шахтах. Шина выполнена с размещенным внутри ее средней части замкнутого контура из листовой пружинной стали или пластмассы с отогнутыми внутрь шины боковыми кромками при их криволинейном профиле. Отогнутые внутрь концы контура связаны между собой разъемным болтовым соединением. Между наружной поверхностью указанного выше контура и внутренней поверхностью шины размещена приклеенная к контуру сплошная по длине прокладка или примыкающие друг к другу отдельные резиновые прокладки. Ширина единственной или примыкающих друг к другу прокладок равны ширине замкнутого контура, которая принята равной 60÷70% ширины шины. Технический результат - повышение допустимой нагрузки на шины колес шахтного большегрузного автомобиля-самосвала и соответствующее увеличение срока их эксплуатации. 2 ил.

Изобретение относится к конструкции спиц для бескамерных или гибридных шин, предназначенных для транспортных средств. Площадь поперечного сечения свободной кромки на осевом конце спицы уменьшена по сравнению с геометрией основного корпуса. Также раскрыта конструкция литьевой формы, которая изменяет расположение и направление потенциального заусенца, а также сокращает другие потенциальные недопрессовки в случае, если жидкость, такая как полиуретан, заливается во впадины формы для образования спицы. Технический результат - снижение вероятности концентрации напряжения, образующегося на кромке спицы, что увеличивает износоустойчивость шины и повышает усталостную прочность. 3 н. и 14 з.п. ф-лы, 8 ил.

Изобретение относится к транспортному машиностроению, а именно к колесам со сменным протектором - бесконечной гусеницей. В колесе со сменным протектором - бесконечной гусеницей, содержащем обод с закрепленным на нем бесконечным основанием, на периферии которого смонтированы трубчатые элементы, бесконечное основание имеет в периферийной части по меньшей мере два ряда разрезных на удаленных от обода частях трубчатых элементов - цилиндрических колец, служащих крепежными узлами сменным пневмокамерам, сложенным по диаметру и зафиксированным в соответствующей части цилиндрическими кольцами с перфорацией в разрезных кольцах. При этом трубчатые элементы могут иметь перфорацию и/или насечку. Технический результат - расширение функциональных возможностей колеса со сменным протектором - бесконечной гусеницей. 1 з.п. ф-лы, 1 ил.

Изобретения относятся к колесу и шине в сборе, которые содержат безвоздушные шины, имеющие некоторые эксплуатационные характеристики пневматических шин. Колесо в сборе содержит колесо и безвоздушную гибкую шину. Жесткое колесо содержит первую ободную часть, аксиально соединенную со второй ободной частью. Первая ободная часть одержит первое радиально внешнее кольцо, первую поперечно плоскую наружную поверхность, первую радиально плоскую внутреннюю поверхность, первый внутренний край, центральный диск, наружный край и центральный ступичный фланец для соединения первой ободной части со ступицей. Центральный диск аксиально смещен от первой радиально плоской внутренней поверхности. Промежуточный выступ является продолжающимся от первого внутреннего края к наружному краю центрального диска. Центральный диск выполнен с возможностью введения через центральный проем при соединении первой радиально плоской внутренней поверхности ко второй плоской внутренней поверхности, так что промежуточный выступ смежен второму внутреннему краю второй плоской внутренней поверхности. Вторая ободная часть содержит второе внешнее кольцо и вторую наружную поверхность, продолжающуюся вокруг окружности колеса, и вторую внутреннюю поверхность, имеющую второй внутренний край. Безвоздушная гибкая шина установлена на колесе так, что шина взаимодействует с наружными поверхностями ободных частей колеса. Достигается возможность изгибания шины в ответ на давление при взаимодействии с землей, в результате чего минимизируется проникновение в грунт и повреждение почвы. 3 н. и 8 з.п. ф-лы, 22 ил.
Наверх