Опорно-упорный подшипник

Изобретение относится к турбиностроению и предназначено для использования в подшипниках валопровода турбины. Опорно-упорный подшипник содержит упорные колодки, размещенные с двух сторон опорной поверхности вкладыша, сопряженного его сферической поверхностью с обоймой подшипника. При этом вкладыш выполнен с радиальными кольцевыми выступами, между ними установлены упорные колодки с рабочими поверхностями, обращенными навстречу друг другу. Диаметр опорной поверхности вкладыша выполнен больше корневого диаметра колодок. Такое выполнение подшипника обеспечивает увеличение диаметра опорной поверхности без увеличения при этом наружного (периферийного) диаметра колодок и предотвращает попадание отработанного масла с опорной поверхности на рабочие поверхности колодок. Технический результат - повышение несущей способности и надежности работы опорно-упорного подшипника. 1 ил.

 

Изобретение относится к турбиностроению и предназначено для использования в подшипниках валопровода турбины.

Известен подшипник, который воспринимает только осевое усилие валопровода и содержит два одинаковых ряда упорных колодок (сегментов), расположенных симметрично относительно вертикальной оси подшипника, при этом рабочие поверхности упорных колодок, контактирующие с гребнем вала, обращены друг к другу (1).

Применение такой конструкции в многоцилиндровой турбине возможно при условии, что один из ее роторов части высокого давления (ЧВД) или части среднего давления (ЧСД) имеет три подшипника: два опорных и один упорный, который устанавливается в общем корпусе с опорным. В этом случае валопровод турбины заметно удлиняется, так как размещение отдельного упорного подшипника в корпусе требует увеличения общего осевого габарита и организации автономной системы подвода и слива масла. В маслоопорных схемах валопровода (один подшипник между отдельными цилиндрами турбины), когда упорный подшипник располагается перед опорным между ЧВД и ЧСД, увеличивается межопорное расстояние ротора высокого давления и его прогиб, что обуславливает повышение радиальных зазоров проточной части ВД и снижение ее экономичности.

Известна конструкция комбинированного опорно-упорного подшипника, воспринимающая радиально-осевые нагрузки валопровода турбины, принятая за прототип, содержащая опорную поверхность и расположенные с двух сторон от нее два ряда упорных колодок, у которых рабочие поверхности, контактирующие с упорными гребнями ротора турбины, обращены в противоположные стороны (2). Конструкция подшипника с размещением упорных колодок по обе стороны опорной поверхности вкладыша целесообразна для паровых турбин с промежуточным перегревом пара, в которых осевое усилие может менять свое направление.

В рассматриваемой конструкции диаметр опорной поверхности вкладыша практически равен корневому диаметру упорных колодок. Такая особенность вкладыша ограничивает его несущую способность, т.к. увеличение диаметра опорной поверхности требует увеличения периферийного диаметра колодок и соответственно диаметра упорных гребней ротора, максимальная величина которых ограничена допустимыми потерями на трение упорных поверхностей ротора и колодок. Кроме того, в такой конструкции отработанное горячее масло с опорной поверхности сливается через упорные колодки, что приводит к повышению температуры масла и баббитового слоя колодок, в результате снижается надежность их работы.

При возможной эрозии баббитовой заливки опорной поверхности вкладыша частицы баббита вместе с отработанным маслом попадают на рабочие поверхности упорных колодок, что также снижает надежность работы последних.

Отмеченные недостатки являются прямым следствием выполнения диаметра опорной поверхности вкладыша на уровне корневого диаметра упорных колодок при описанном выше расположении колодок и их рабочих поверхностей.

Технический эффект изобретения - повышение несущей способности опорной поверхности вкладыша и надежности работы упорных колодок опорно-упорного подшипника.

Технический эффект обеспечен в опорно-упорном подшипнике, содержащем упорные колодки, размещенные с двух сторон опорной поверхности вкладыша, сопряженного сферической поверхностью с обоймой, отличающемся тем, что вкладыш выполнен с двумя радиальными кольцевыми выступами, между которыми установлены упорные колодки с рабочими поверхностями, обращенными навстречу друг к другу, при этом диаметр опорной поверхности вкладыша выполнен больше корневого диаметра упорных колодок. Указанное выполнение подшипника обеспечивает повышение несущей способности за счет возможности увеличения диаметра его опорной поверхности без смещения при этом упорных колодок в радиальном направлении и предотвращает за счет действия центробежные сил попадание отработанного масла с опорной поверхности в зону расположения упорных колодок, что повышает надежность их работы.

Изобретение поясняется чертежом, где изображен опорно-упорный подшипник в сборе с ротором турбины.

Опорно-упорный подшипник содержит вкладыш подшипника из 2-х половин 1 и 2 с опорной поверхностью 3, кольцевой масляной полостью 4 и каналами 5 для подачи масла к двум рядам упорных колодок: рабочих 6 и установочных 7. Колодки 6 и 7 закреплены на кольцах 8, которые фиксируются на кольцевых радиальных выступах 9 и 10 вкладыша, предназначенных для установки колодок 6, 7. Диаметр опорной поверхности 3 больше корневого диаметра колодок 6, 7. Опорная поверхность 3 размещена на уровне периферийной зоны колодок 6, 7. Вкладыш заключен в обойму, выполненную из двух половин 11, 12. Вкладыш сопряжен его сферической поверхностью 13 с обоймой. Обойма установлена в корпусе 14 подшипника. Вкладыш имеет на внутренней поверхности две камеры 15 и 16 и сквозные отверстия 17 и 18 для слива отработанного масла в корпус подшипника 14. Рабочие поверхности 19 колодок 6 и рабочие поверхности 20 колодок 7 обращены к опорной поверхности 3 навстречу друг другу.

Осевое усилие от ротора 21, которое на работающей турбине направлено в сторону генератора, как показано на чертеже, воспринимается рабочими упорными колодками 6. От этих колодок через радиальный выступ 9 вкладыша осевое усилие действует на упорную часть его сферической поверхности 13, выполненную с большим углом α, чем угол α оставшейся части сферической поверхности 13. Далее осевое усилие через обойму передается на корпус подшипника 14. Для работы опорно-упорного подшипника подается масло в кольцевую полость 4, из которой оно по соответствующим каналам (на чертеже не показаны) поступает на опорную поверхность 3 и по каналам 5 на рабочие поверхности рабочих 6 и установочных 7 колодок. Отработанное масло с опорной поверхности 3 вкладыша сливается в камеры 15 и 16, смешивается с отработанным маслом от колодок 7, 6 и через отверстия 17 и 18 отводится в корпус подшипника 14. При этом в предложенном подшипнике предотвращено попадание отработанного масла с опорной поверхности 3 на рабочие поверхности 19 и 20 упорных колодок 6 и 7. В результате повышается надежность работы упорных колодок и соответственно надежность работы турбины. В заявленном подшипнике диаметр опорной поверхности вкладыша значительно больше корневого диаметра колодок при сохранении величины их периферийного диаметра. В результате такой подшипник в сравнении с известными аналогичными конструкциями имеет большую несущую способность опорной поверхности вкладыша, например в 1,5 раза больше по сравнению с существующим подшипником с вкладышем диаметром 450 мм, при сохранении радиальных размеров упорных колодок.

Источники информации

1. Трухний А.Д., Стационарные паровые турбины. М., Энергоатомиздат, 1990, с.128, рис. 3, 71.

2. Там же, с.127, рис. 3, 70.

Опорно-упорный подшипник, содержащий упорные колодки, размещенные с двух сторон опорной поверхности вкладыша, сопряженного сферической поверхностью с обоймой подшипника, отличающийся тем, что вкладыш выполнен с двумя радиальными кольцевыми выступами, между которыми установлены упорные колодки с рабочими поверхностями, обращенными навстречу друг к другу, при этом диаметр опорной поверхности вкладыша выполнен больше корневого диаметра колодок.



 

Похожие патенты:

Изобретение относится к машиностроению и может быть использовано в нефтехимической промышленности и холодильной технике. .

Изобретение относится к устройству подшипника, в котором на пластине или на аналогичной поверхности двери, окна или подобной части конструкции закреплен подшипник, действующий как в осевом, так и в радиальном направлении, и на нем - ручка или другое воздействующее средство, поворачивающееся относительно пластины.

Изобретение относится к машиностроению и может быть использовано в опорах скольжения, испытывающих кроме радиальных нагрузок осевые перемещения и динамические нагрузки.

Изобретение относится к области машиностроения и может быть использовано при создании опорно-упорных подшипников скольжения, предназначенных для работы в тяжелых условиях, например в качестве подшипников ротора паровой турбины, работающего при высоких нагрузках и частоте вращения, а кроме того, подверженного значительному нагреву.

Изобретение относится к области машиностроения и может использоваться в различных узлах трения машин и механизмов. .

Изобретение относится к машиностроению, в частности к радиально-упорному подшипнику скольжения, и может быть использовано в горнодобывающей промышленности на вращающихся деталях большого габарита и веса.

Изобретение относится к теплоэнергетике , в частности к теплообменным аппаратам с реактивными гидровентиляторами. .

Изобретение относится к узлам и деталям машин, в частности к опорам скольжения, и может быть использовано в различных машинах и устройствах для восприятия нагрузок , изменяющихся по направлению их приложения.

Изобретение относится к тяжелому машиностроению и может быть использовано в опорах скольжения, испытывающих большие радиальные статические и динамические нагрузки, а также незначительные осевые смещения и нагрузки взамен самоустанавливающихся подшипников катков, колес, роликов балансиров перемещения металлоконструкций: кран-балок, консольно-козловых, козловых и башенных кранов, а также большегрузных тележек

Изобретение относится к области вращающихся машин

Изобретение относится к подшипнику скольжения для стойки подвески четырехколесного автомобиля

Изобретение относится к области машиностроения, в частности к опорам скольжения валов

Изобретение относится к подшипнику скольжения, в частности к подшипнику скольжения, применимому в качестве упорного подшипника скольжения подвески стоечного типа четырехколесного транспортного средства, а также к комбинированному устройству

Изобретение относится к упорному подшипнику скольжения из синтетической смолы, более точно, к упорному подшипнику скольжения, применимому в качестве упорного подшипника скольжения в подвеске стоечного типа (подвески Макферсона) четырехколесного транспортного средства

Изобретение относится к турбомашиностроению и может быть использовано в качестве опор высокоскоростных роторов машин и агрегатов, нагруженных радиальными и осевыми нагрузками, при необходимости обеспечить большую несущую способность при сохранении устойчивого положения ротора, в системах кондиционирования воздуха кабин летательных аппаратов, а также систем турбонаддува в современном автомобилестроении и в микрогазотурбинных электроагрегатах

Изобретение относится к машиностроению и может быть использовано в различных узлах трения. Радиально-осевой подшипник скольжения содержит втулку из антифрикционного материала с наружной цилиндрической посадочной поверхностью и рабочими поверхностями. Рабочая поверхность для восприятия двусторонней осевой нагрузки выполнена в виде нескольких кольцевых канавок с треугольным равносторонним профилем. Втулка может быть разрезной с возможностью посадки контртела на кольцевые канавки. Кольцевые канавки имеют упругий бандаж, вмонтированный во втулку по сферической поверхности. Упругий бандаж может быть выполнен из резины. Упругий бандаж может быть вмонтирован во втулку с натягом. Технический результат: повышение долговечности подшипника скольжения и использование его при работе с динамическими нагрузками и перепадами температур. 2 з.п. ф-лы, 1 ил.

Изобретение относится к машиностроению и может быть использовано в различных узлах трения. Радиально-осевой подшипник скольжения содержит втулку из антифрикционного материала с наружной цилиндрической посадочной поверхностью и рабочие поверхности. Рабочая поверхность для восприятия двусторонней осевой нагрузки выполнена в виде нескольких кольцевых канавок с треугольным равносторонним профилем. Втулка может быть разрезной с возможностью посадки контртела на кольцевые канавки. Кольцевые канавки размещены на внутренней поверхности разрезных колец, вмонтированных по скользящей посадке во втулку. Наружная поверхность разрезных колец связана со втулкой упругими кольцевыми элементами. Упругие кольцевые элементы выполнены в виде пружин. Разрезные кольца выполнены из антифрикционного материала, например фторопласта. Технический результат: повышение долговечности подшипника скольжения и использование его при работе с динамическими нагрузками и перепадами температур. 2 з.п. ф-лы, 1 ил.
Наверх