Стенд для динамических испытаний изделий

Изобретение относится к области динамических испытаний изделий, преимущественно реактивных снарядов, ракет, их узлов и элементов. Стенд включает в себя натянутую между опорами гибкую продольную направляющую, установленную на ней с помощью элементов движения каретку для закрепления испытуемого изделия и систему контроля. Также в него введена, по крайней мере, еще одна гибкая продольная направляющая, расходящаяся под углом к первой в направлении движения каретки и связанная с кареткой посредством элементов движения. При этом гибкие продольные направляющие выполнены из стальных канатов, расположены симметрично относительно продольной оси каретки и охвачены элементами движения, соединенными через тело каретки. На поверхностях элементов движения, контактирующих с направляющими, выполнены заходные фаски или округления. Технический результат - расширение функциональных возможностей стенда, а именно возможность улавливания испытуемых изделий с большими значениями кинетической энергии. 3 ил.

 

Изобретение относится к области динамических испытаний изделий, преимущественно реактивных снарядов, ракет и их узлов и элементов.

Известна аэродинамическая труба [1], позволяющая в стендовых условиях определять и проводить отработку аэродинамических характеристик снаряда (ракеты). Принципиально это сооружение представляет собой трубу, через которую прогоняется высокоскоростной поток воздуха. Испытуемый снаряд или его модель закрепляют в трубе неподвижно и, используя принцип обратимости движения, вдоль неподвижного снаряда прогоняют воздух. Т.о. в аэродинамической трубе имеет место картина, обратная той, которая наблюдается при полете снаряда (ракеты) на траектории, но от этого аэродинамические характеристики не меняются. Неподвижность испытуемого объекта очень удобна для измерения характеристик снаряда, т.к. при этом существенно упрощается съем информации и повышается точность измерения по сравнению со снарядом, движущимся по траектории. Однако предложенное устройство для испытаний снарядов не обеспечивает воспроизведения такого существенного фактора, как продольная перегрузка (ускорение), оказывающего влияние на функционирование и работоспособность многих узлов и элементов снаряда (ракеты), т.е. не позволяет проводить динамические испытания снарядов и ракет.

Известен стенд для динамических испытаний ракетных двигателей малой тяги [2], принятый за прототип. Между двумя деревьями или столбами (опорами) натягивается стальная проволока, на которой установлена с возможностью перемещения тележка (каретка). На тележке закрепляют испытуемый ракетный двигатель (РД). При запуске ракетного двигателя тележка начинает двигаться по стальной проволоке, испытывая при этом продольное ускорение (перегрузку). Конструкция данного стенда позволяет проводить динамические испытания изделий и исследовать при этом влияние продольной перегрузки (ускорения) на функционирование узлов и элементов изделий. Однако данный стенд предназначен для динамических испытаний ракетных двигателей малых тяг, предназначенных для моделей ракет, и не позволяет проводить динамические испытания изделий, имеющих большие значения кинетической энергии, например противотанковых снарядов и ракет. Поясним это следующим образом.

В рассмотренном стенде [2] торможение и улавливание испытуемого изделия осуществляется с помощью так называемого импульсного или баллистического маятника. Разогнанная тележка с испытуемым РД ударяется в вилку маятника известной массы. При соударении тележки с маятником (вилкой) кинетическая энергия тележки переходит в отклонение вилки маятника, регистрируемое с помощью индикатора, оставляющего след на бумаге (система контроля), по величине которого определяют максимальную скорость тележки. В момент соударения тележки с вилкой на испытуемый РД и тележку действует импульсное значение отрицательной продольной перегрузки (ускорения), которое отсутствует в натурных условиях и может привести к разрушению тележки с РД, т.е. не обеспечит их спасение. Причем значение отрицательной перегрузки будет тем выше, чем выше будет скорость каретки и больше масса вилки баллистического маятника. Т.е. для снижения отрицательного влияния соударения тележки с РД о вилку маятника масса последней должна быть как можно меньше, но при этом может не обеспечиваться полное торможение и улавливание тележки вилкой маятника и будет происходить жесткий удар тележки об опору, на которую натянута проволока. Таким образом, наблюдается техническое противоречие, которое заключается в том, что для снижения отрицательного влияния на испытуемый узел масса вилки маятника должна быть минимальной, а для обеспечения торможения и улавливания тележки с испытуемым РД масса вилки маятника должна быть максимальной.

Кроме того, так как сила тяги РД создает относительно элементов подвески (элементов движения) тележки момент, который старается развернуть тележку поперек движения, то при этом возможен обрыв направляющей проволоки. Причем, чем больше сила тяги РД, тем больше будет момент, опрокидывающий тележку. Следовательно, стенд не позволяет проводить динамические испытания противотанковых снарядов и ракет, для которых характерно использование так называемых импульсных стартовых РД, время работы которых составляет доли секунды, а сила тяги при этом достигает существенной величины.

Задачей, на решение которой направлено предполагаемое изобретение, является расширение функциональных возможностей стенда при приближении условий испытаний к натурным. Техническим результатом, достигаемым в результате решения задачи, является возможность улавливания испытуемых изделий с большими значениями кинетической энергии при повышении эффективности и плавности торможения.

Поставленная задача достигается тем, что в известном стенде для динамических испытаний изделий, включающем натянутую между опорами гибкую продольную направляющую с установленной на ней с помощью элементов движения кареткой для закрепления испытуемого изделия и систему контроля, в него введена по крайней мере еще одна гибкая продольная направляющая, расходящаяся под углом к первой в направлении движения каретки и связанная с кареткой посредством элементов движения, при этом гибкие продольные направляющие выполнены из стальных канатов, расположены симметрично относительно продольной оси каретки и охвачены элементами движения, соединенными через тело каретки, а на поверхностях элементов движения, контактирующих с направляющими, выполнены заходные фаски или скругления.

Введение в конструкцию стенда дополнительной гибкой направляющей и расположение направляющих симметрично относительно продольной оси каретки обеспечивает симметричное нагружение каретки при движении и торможении и тем самым исключает угловой разворот каретки относительно направляющих и обрыв последних.

Выполнение направляющих под углом друг к другу позволяет плавно расходовать кинетическую энергию, приобретенную кареткой с изделием при срабатывании стартового двигателя, на трение и деформацию направляющих. При этом на стартовом и начальном участках, где расстояние между направляющими и угол их расхождения малы, сопротивлением движению каретки можно пренебречь, что позволяет отрабатывать элементы изделия на этих участках в условиях, близких к натурным.

Использование стальных канатов в качестве направляющих позволяет упростить монтаж стенда при значительной длине стенда и повысить эксплуатационные характеристики стенда за счет прочности и долговечности канатов.

Выполнение на поверхностях элементов движения, контактирующих с направляющими, заходных фасок или скруглений позволяет исключить разрывы прядей и нитей каната при увеличении в процессе торможения угла между направляющими и как следствие их обрыв.

Изобретение поясняется графическими материалами:

на фиг.1 изображена схема стенда вид сбоку;

на фиг.2 изображена схема стенда вид сверху;

на фиг.3 схематично изображен вид по стрелке А на фиг.2.

Стенд для динамических испытаний изделий включает опоры 1 и 2, между которыми натянуты гибкие продольные направляющие 3 и 4, на которых с помощью элементов движения 5 (башмаков скольжения) установлена каретка 6 для закрепления испытуемого изделия 7, например противотанковой ракеты со стартовым импульсным ракетным двигателем 8. Направляющие 3 и 4 в направлении движения каретки 6 расходятся под небольшим углом α, плавно увеличивающимся по мере продвижения каретки по направляющим. Каретка 6 может быть выполнена, например, в виде переднего 9 и заднего 10 хомутов, скрепленных между собой продольными стяжками 11. Направляющие 3 и 4, расходящиеся под углом α, охвачены элементами движения 5, соединенными через тело каретки (хомуты 9 и 10), например, с помощью болтов 12 и гаек 13. На элементах движения 5 выполнены заходные фаски или скругления 14. Расположение направляющих 3 и 4 симметрично относительно продольной оси каретки 6 (ось каретки расположена на биссектрисе угла α) обеспечивает симметричное нагружение каретки при торможении и тем самым исключает угловой разворот каретки относительно направляющих и обрыв последних. Каретка 6 выполняется как можно более легкой, чтобы не увеличивать ускоряемую массу ракеты 7. При этом воздействие натурного продольного ускорения на узлы и элементы испытуемой ракеты 7 при срабатывании ракетного двигателя 8 обеспечивается за счет использования более легкого того или иного узла, например облегченного имитатора боевой части.

Работа на стенде осуществляется следующим образом: при срабатывании импульсного ракетного двигателя 8 ракета 7, установленная в каретке 6, ускоряется и при этом ее узлы и элементы испытывают натурные продольные ускорения и инерционные нагрузки, так как в начале движения угол α имеет незначительную величину, а импульсные ракетные двигатели имеют силу тяги в несколько тонн и срабатывают на пути ~1 м, то силой трения каретки 6 о направляющие 3 и 4 на этапе разгона можно пренебречь. При необходимости уменьшения на этапе разгона силы трения можно достигнуть за счет расположения направляющих 3 и 4 на этом участке параллельно друг другу. Это можно обеспечить, например, установкой на направляющих на расстоянии не менее расстояния, на котором срабатывает ракетный двигатель 8, поперечной связи, например веревки, разрушаемой кареткой 6 при движении. В процессе разгона с помощью системы контроля могут регистрироваться, например, продольные ускорения на узлах и элементах ракеты (снаряда), деформации элементов под действием инерционных сил, параметры функционирования того или иного узла и элемента, например взведение взрывателя, срабатывание предохранительных и исполнительных механизмов, инерционных замыкателей и т.д. В качестве системы контроля при этом могут использоваться, например, набор различных датчиков, соединенных с бортовой радиотелеметрией, наземная приемная и регистрирующая аппаратура, а также скоростная кино- и видеосъемка.

Каретка 6 с испытуемой ракетой 7 и стартовым двигателем 8 двигаются по инерции по направляющим 3 и 4. По мере продвижения по направляющим угол их расхождения α постепенно увеличивается и сила трения при этом плавно возрастает, т.е. происходит плавное торможение и улавливание каретки 6 с испытуемым снарядом 7. Заходные фаски или скругления 14, выполненные на поверхностях элементов движения 5, контактирующих с направляющими, позволяют исключить перерезывание прядей и нитей каната при увеличении угла α и тем самым избежать обрыва направляющих. Испытуемая ракета 7, спасенная при помощи плавного торможения, снимается с каретки 6 и осматривается. При этом проверяется целостность ее узлов и элементов, а с учетом информации, полученной с помощью системы контроля, дается заключение о функционировании узлов и элементов ракеты (снаряда) и запасах прочности.

Таким образом, предложенное техническое решение задачи по сравнению с прототипом позволяет улавливать испытуемые изделия с качественно большими значениями кинетической энергии и при этом повысить эффективность и плавность торможения испытуемого изделия, т.е. предложенное изобретение обеспечивает расширение функциональных возможностей стенда и приближение условий испытаний к натурным.

Источники информации

1. В.Д.Куров, Ю.М.Должанский, Основы проектирования пороховых ракетных снарядов, М., Оборонгиз, 1961 г., с.281...282.

2. П.Эльштейн, Конструктору моделей ракет, М., Мир, 1978 г., с.205, рис.9.6. - прототип.

Стенд для динамических испытаний изделий, включающий натянутую между опорами гибкую продольную направляющую с установленной на ней с помощью элементов движения кареткой для закрепления испытуемого изделия и систему контроля, отличающийся тем, что в него введена, по крайней мере, еще одна гибкая продольная направляющая, расходящаяся под углом к первой в направлении движения каретки и связанная с кареткой посредством элементов движения, при этом гибкие продольные направляющие выполнены из стальных канатов, расположены симметрично относительно продольной оси каретки и охвачены элементами движения, соединенными через тело каретки, а на поверхностях элементов движения, контактирующих с направляющими, выполнены заходные фаски или скругления.



 

Похожие патенты:

Изобретение относится к измерительной технике, в частности к способам сборки и проверки подшипникового погона, который является опорой вращающейся части артиллерийских установок, и может найти, в частности, применение для проверки погонов, устанавливаемых в артиллерийской установке с эксцентричным расположением качающей части относительно вращающей части.

Изобретение относится к испытательному оборудованию и может быть применено в машиностроении для испытания стеклоподъемников на работоспособность. .

Изобретение относится к оборудованию для испытания землеройных машин. .

Изобретение относится к устройствам для испытания замков, преимущественно применяемых в качестве замков зажигания в автомобилях или иных транспортных средствах. .

Изобретение относится к испытательной технике, а именно к схемам управления ротационной машиной и оборудованием при проведении многофункциональных воздействий на испытываемые изделия.

Изобретение относится к наземной отработке и испытаниям систем управления космических аппаратов (КА). .

Изобретение относится к стендам для гидравлических испытаний изделий и может быть использовано при исследовании процессов заправки техники топливом на аэродромах.

Изобретение относится к испытательной технике, а именно к испытаниям подкрановых балок на выносливость в условиях эксплуатации. .
Изобретение относится к способам испытаний полимерных материалов и может быть использовано в кабельной технике для оценки работоспособности комплектов монтажных деталей (КМД) муфт кабелей связи, в том числе оптических кабелей (ОК), после хранения в заданном интервале времени.

Изобретение относится к области испытания взрывчатых веществ путем их ударно-волнового сжатия. .

Изобретение относится к оборонной технике и, в частности, к комплексным средствам контроля управляемых ракет. .

Изобретение относится к оборонной промышленности, а именно к устройствам для испытания на работоспособность и прочность нагружаемых при выстреле деталей и узлов снарядов, мин, гранат, пусковых устройств (стволов, реактивных двигателей, взрывателей и т.п.).

Изобретение относится к военной технике, а конкретно к способам испытаний минометных выстрелов и их узлов и элементов. .

Изобретение относится к испытаниям объектов, содержащих электровзрывные устройства, на воздействие электромагнитных полей. .

Изобретение относится к области криминалистической техники и может быть использовано для идентификации оружия по следам, оставляемым на пулях при выстреле. .

Изобретение относится к ракетной технике, в частности к ракетным двигателям твердого топлива, и может найти применение при испытаниях скрепленных зарядов ракетных в системах различных классов.

Изобретение относится к оптическим приборам, в частности к микроскопам, предназначенным для получения изображений следов на патронных гильзах. .

Изобретение относится к военной технике, а именно к электрическим системам, размещенным на снарядах. .

Изобретение относится к разработке и совершенствованию образцов оружия, в частности к экспериментальной баллистике при определении технического рассеивания пуль и снарядов на траектории.

Изобретение относится к устройствам для определения характеристик чувствительности взрывчатых веществ (ВВ) к удару и представляет собой средство исследования ВВ
Наверх