Сепаратор-стекломат для герметичных свинцовых аккумуляторов с абсорбированным электролитом

Изобретение относится к электротехнической промышленности и может использоваться для изготовления сепараторов для герметичных свинцовых аккумуляторов с абсорбированным электролитом. Целью изобретения является сепаратор-стекломат с оптимальной пористой структурой, способствующей полному абсорбированию электролита, с низким электросопротивлением и достаточной механической прочностью, обеспечивающей высокие сепарирующие свойства. Сущность изобретения состоит в создании сепаратора - стекломата из стекловолокна, представляющего собой композицию, содержащую микропористые микротонкие стеклянные штапельные волокна со средним диаметром (0,35-0,40) мкм, средним диаметром (0,22-0,25) мкм и химически стойкого латекса в качестве связующего, при следующем соотношении компонентов, мас.%: Волокно со средним диаметром (0,35-0,40) мкм - 78-80. Волокно со средним диаметром (0,22-0,25) мкм - 15-17. Химически стойкий латекс - остальное до 100. 1 табл.

 

Изобретение относится к электротехнической промышленности и может быть использовано для производства сепарационных материалов для свинцовых аккумуляторных батарей с абсорбированным электролитом традиционного типа, также цилиндрических и призматических.

УРОВЕНЬ ТЕХНИКИ

Анализ патентно-информационных источников по созданию сепарационных материалов, абсорбирующих сернокислый электролит, проведен с учетом функций, возложенных на этот вид сепаратора в составе герметичного аккумулятора, т.е. сепаратор должен служить не только изолятором от коротких замыканий, но и резервуаром электролита. Кроме того, через сепаратор должен беспрепятственно проходить кислород, выделяющийся в ходе электрохимической реакции и восстанавливающийся на отрицательном электроде. При этом поры сепаратора существенно заполнены электролитом. Поэтому абсорбирующий сепаратор должен иметь поры двух типов: одни для транспорта газа размером 2-4 мкм, другие - для транспорта ионов электролита размером 10-25 мкм.

В настоящее время известно много патентов по созданию абсорбирующего сепаратора. Применяются стекловолокна различного диаметра с добавлением органических полимерных волокон и неорганических наполнителей. При этом прослеживается тенденция к тому, что производители абсорбирующих сепараторов добиваются хороших характеристик впитывания электролита и равномерного его распределения за счет варьирования различных видов волокон.

Известен сепаратор для герметичной свинцово-кислотной аккумуляторной батареи по международной заявке WO №80/01969, кл. Н 01 М 2/16, 1980 г.

Материал изготавливают из композиции, содержащей 30-80 мас.% перлита и 20 - 70 мас.% стеклянных волокон диаметром от 03 до 1,0 мкм; частицы перлита имеют размер 3-100 мкм.

Композиция, содержащая 15-75 мас.% перлита, 20 - 70% мае.% стеклянных волокон и 5 - 20 мас.% не растворимых в кислоте термоустойчивых волокон, имеет функцию сборщика электролита.

Недостатком известного материала является то, что он имеет крупнопористую структуру и в связи с этим невысокие удерживающие способности к электролиту.

Известен сепаратор для герметичной свинцовой аккумуляторной батареи по международной заявке WO №9800875, кл. Н 01 М 2/16, 1998 г.

Сепаратор изготовлен из смеси стеклянных волокон, большинство из которых имеет диаметр, не превышающий 20 мкм, а с диаметром меньше 1 мкм примерно 5% и 0,2 - 20% волокон целлюлозы. Изготовленный из такой смеси сепаратор обладает более высокой прочностью, чем сформированный из обычной смеси стекловолокон.

Недостатком этого технического решения является крупнопористая структура известного материала и, следовательно, невысокие удерживающие способности к электролиту.

Наиболее близким по технической сущности и достигаемому результату является сепаратор для герметичных свинцово-кислотных аккумуляторных батарей по заявке Японии №61-259452, класс Н 01 М 2/16, 1980 г. (принято за прототип).

Сепаратор изготавливают, смешивая стекловолокно диаметром 3 мкм с микропорошком кислотоупорного неорганического вещества, например диоксида алюминия или вспененного перлита, составляющего 30 - 39% от общей массы сепаратора, а в качестве связующего используется желатин или крахмал в объеме 2 - 5% от общей массы сепаратора.

Недостатком известного материала является то, что он изготавливается из грубого волокна, вследствие чего получается сепарационный материал с крупнопористой структурой, что ведет к невысокой удерживающей способности по отношению к электролиту. Кроме того, недостатком этого известного материала является то, что он в качестве связующего содержит пищевые компоненты, а это - нецелесообразно.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Цель изобретения состоит в создании сепаратора-стекломата, пригодного для использования в герметичных свинцовых аккумуляторных батареях с абсорбированным электролитом любой конструкции (традиционных с плоским сепаратором, цилиндрических и призматических), способного предотвращать короткое замыкание, полностью абсорбировать электролит в количестве, достаточном для электрохимических процессов в аккумуляторе. Также сепаратор должен отличаться необходимой прочностью, низким электросопротивлением, небольшим диаметром пор и высокой удельной впитываемостью сернокислого электролита.

Указанная цель достигается тем, что в качестве стекловолокна взята композиция, содержащая микропористые микротонкие стеклянные штапельные волокна со средним диаметром (0,35 - 0,40) мкм, средним диаметром (0,22 - 0,25) мкм и химически стойкий латекс в качестве связующего при следующем соотношении компонентов, мас.%:

Волокно со средним диаметром (0,35 - 0,40) мкм - 78 - 80

Волокно со средним диаметром (0,22 - 0,25) мкм - 15-17

Химически стойкий латекс - остальное до 100.

Волокна со средним диаметром (0,35 - 0,40) мкм производились в соответствии с техническими требованиями ТУ 6-11-483-79, волокна со средним диаметром (0,22 - 0,25) мкм производились в соответствии с техническими требованиями ТУ 6-19-062-87, а химически стойкий полиметилметакрилатный латекс производился в соответствии с ТУ 6-01-479-79.

Сепаратор-стекломат изготавливается по бумажной технологии. Микротонкие стеклянные штапельные волокна, указанные выше, предварительно обрабатывались в размалывающем ролле при концентрации 0,8 - 1,0%. Волокна каждого диаметра обрабатывались раздельно, т.к. в исходном состоянии они имеют различную длину. При размоле волокна расчесываются, расщепляются и укорачиваются.

В подготовленную таким образом массу добавляется любое химически стойкое связующее, например бутадиеннитрильный каучук, полиметилметакрилатный латекс и другие.

Подготовленная масса разбавляется водой до концентрации 0,2 - 0,3% и поступает на отлив. Отлитые образцы прессуются и сушатся.

Полученные образцы сепараторов-стекломатов были испытаны по стандартным методикам на физико-механические свойства.

Были изготовлены и испытаны следующие образцы.

Образец 1.

Изготовлен образец стекломата, состоящий из смеси микротонких штапельных волокон с добавлением химически стойкого латекса в соотношении, мас.%:

Волокно со средним диаметром М20 - МТВ - (0,35 - 0,40) мкм - 76

Волокно со средним диаметром М20 - МТВ - (0,22 - 0,25) мкм - 20

Химически стойкий латекс - 4.

Полученный материал имеет толщину 0,7 мм, предел прочности при растяжении - 0,25 МПа, электрическое сопротивление 0,12 Ом·см2, максимальный диаметр пор - 20 мкм, минимальный - 6 мкм, удельную впитываемость сернокислого электролита - 12,5 г/г, недостаточную эластичность и устойчивость к механическим повреждениям.

Удельная впитываемость сернокислого электролита характеризуется количеством серной кислоты в граммах, поглощенной сепарационным материалом за 10 мин при полном погружении его в серную кислоту, отнесенное к массе абсолютно сухого сепаратора в граммах.

Определение этого параметра проводилось по методике, изложенной в ТУ ОП 13-0248643-251-92 "Материал сепарационный для кислотных источников тока".

Образец 2.

Изготовлен образец стекломата, состоящий из смеси микротонких штапельных волокон с добавлением химически стойкого латекса в соотношении, мас.%:

Волокно со средним диаметром М20 - МТВ - (0,35 - 0,40) мкм - 78 - 80

Волокно со средним диаметром М20 - МТВ - (0,22 - 0,25) мкм - 15 - 17

Химически стойкий латекс - остальное до 100.

Полученный материал имеет толщину 0,7 мм, предел прочности при растяжении - 0,42 МПа, электрическое сопротивление - 0,06 Ом·см2, максимальный диаметр пор - 10 мкм, минимальный - 2 мкм, удельную впитываемость сернокислого электролита - 18,7 г/г, обладает способностью к перегибу без механических повреждений.

Образец 3.

Изготовлен образец стекломата, состоящий из смеси микротонких штапельных волокон с добавлением химически стойкого латекса в соотношении, мас.%:

Волокно со средним диаметром М20 - МТВ - (0,35 - 0,40) мкм - 78 - 80

Волокно со средним диаметром М20 - МТВ - (0,22 - 0,25) мкм - 15 - 17

Химически стойкий латекс - остальное до 100.

Образец 3 имеет толщину 1,1 мм, максимальный диаметр пор - 10 мкм, минимальный - 2 мкм, обладает низким электросопротивлением - 0.07 Ом·см2, способен к перегибу без механических повреждений, имеет предел прочности при растяжении - 0,45 МПа и удельную впитываемость сернокислого электролита - 18,7 г/г.

Образец 4.

Изготовлен образец стекломата, состоящий из смеси микротонких штапельных волокон с добавлением химически стойкого латекса в соотношении, мас.%:

М20 - МТВ - (0,35 - 0,40) мкм - 83

М20 - МТВ - (0,22 - 0,25) мкм - 13

Химически стойкий латекс - 4

Полученный образец стекломата имеет толщину 0,7 мм, электрическое сопротивление - 0,12 Ом • см2, максимальный диаметр пор - 30 мкм, минимальный - 8 мкм, предел прочности при растяжении - 0,25 МПа и удельную впитываемость сернокислого электролита - 11,6 г/г.

Полученные результаты представлены в таблице 1.

Как видно из приведенных примеров (Табл.1), снижение содержания в композиции микротонкого штапельного стекловолокна с диаметром (0,35 -0,40) мкм ниже 78% (образец 1) ведет к снижению механической прочности, эластичности и удельной впитываемости сернокислого электролита. Структура сепаратора-стекломата при этом получается крупнопористой.

Увеличение содержания в композиции стекловолокна с диаметром (0,35 - 0,40) мкм выше 80% (образец 4) также ухудшает физико-механические и структурные характеристики сепаратора-стекломата.

Изменение количественного состава в заявляемой композиции второго компонента - стекловолокна со средним диаметром (0,22 - 0,25) мкм также ведет к ухудшению физико-механических свойств сепаратора-стекломата.

Таким образом, заявляемая композиция (образцы 2 и 3) имеет значительное преимущество перед прототипом:

- оптимальную мелкопористую структуру, способствующую хорошему абсорбированию электролита, о чем свидетельствует высокая удельная впитываемость сернокислого электролита и небольшой диаметр пор;

- низкое электросопротивление;

- достаточные механическую прочность и эластичность, обеспечивающие высокие сепарирующие свойства стекломата;

- исключает из своего состава пищевые компоненты.

Таблица 1 – Характеристики образцов заявляемого сепаратора-стекломата
№п п

Образцы
Композиции образцов заявленного сепаратора стекломата мас.%Характеристики стекломата
Толщина под нагру зкой 10 МПа, ммПредел прочности при растяжении, МПаЭластичность (перегиб на 180° без механических повре ждений)Электросопротивление, Ом·см2Удельная впитываемость сернокислого электролита

Диаметр пор, мкм
максимальныйсреднийминимальный
1- Волокно со средним диаметром (0,35-0,40) мкм - 78 - 80

- А

- Волокно со средним диаметром (0,22-0,25) мкм-15-17

- В

- Химически стойкий латекс - С

А – 76

В – 20

С - 4
0,70,25нет0,1212,5208,56,0
2А - 78-80

В - 15-17

С - остальное до 100
0,70,42да0,0618,7106-81,0-3,0
3А - 78-80

В - 15-17

С - остальное до 100
1,10,45да0,0718,7106-81,0-3,0
4А – 83

В - 13

С - 4
0,70,20нет0,1211,630108

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Международная заявка WO №80/01969, кл. Н 01 М 2/16, 1980.

2. Международная заявка WO №980875, кл. Н 01 М 2/16, 1998.

3. Заявка Японии №61-259452, кл. Н 01 М 2/16, 1980 (прототип).

Сепаратор-стекломат для герметичной свинцовой аккумуляторной батареи, содержащий стекловолокно и связующее, отличающийся тем, что в качестве стекловолокна взята композиция, содержащая микропористые микротонкие стеклянные штапельные волокна со средним диаметром (0,35÷0,40) мкм, средним диаметром (0,22÷0,25) мкм и химически стойкий латекс в качестве связующего при следующем соотношении компонентов, мас.%:

Волокно со средним диаметром (0,35÷0,40) мкм - 78÷80

Волокно со средним диаметром (0,22÷0,25) мкм - 15÷17

Химически стойкий латекс Остальное до 100



 

Похожие патенты:

Изобретение относится к области композиционных материалов, в частности к пористым диэлектрическим гибким материалам для химических источников тока. .

Изобретение относится к химическим источникам тока и может быть использовано при конструировании и производстве свинцовых аккумуляторов. .
Изобретение относится к области электротехники, а именно к газодиффузионным электродам химических источников тока, в том числе для топливных элементов с полимерным мембранным электролитом.
Изобретение относится к электротехнической промышленности, в частности к нетканым сепарационным материалам, предназначенным для использования в свинцово-кислотных аккумуляторных батареях, преимущественно цилиндрического или призматического типа.

Изобретение относится к области изготовления армирующего тканого материала для конверта положительного электрода свинцового аккумулятора и может быть использовано при создании безуходных и герметизированных аккумуляторов.

Изобретение относится к производству свинцовых аккумуляторов с большим сроком службы. .

Изобретение относится к области электрохимии, в частности к разделу прямого преобразования химической энергии в электрическую, и может быть использовано в производстве сепараторов для никель-водородных аккумуляторов, а также матриц (электролитоносителей) для топливных элементов со щелочным электролитом.

Изобретение относится к технологии получения катионообменных мембран с присадками нерастворимых солей металлов и может быть использовано в электрохимии при производстве электролизеров для получения хлора и щелочи, топливных элементов, аккумуляторов.

Изобретение относится к электротехническому производству и может быть использовано при производстве электродов для химических источников тока (ХИТ). .

Изобретение относится к производству аккумуляторов, в частности к способам заправки электролитом. .

Изобретение относится к области электрохимии, а более конкретно к использованию специальных добавок для улучшения технологических свойств электролитов в свинцовых аккумуляторах.

Изобретение относится к области электротехники, в частности к жидкому силикатному электролиту с низким содержанием натрия для свинцовых кислотных батарей, приготовляемому с использованием технологии намагничивания, и к применению такого электролита
Изобретение относится к электротехнической промышленности и может быть использовано при изготовлении свинцовых аккумуляторов
Изобретение относится к электротехнической промышленности и может быть использовано при изготовлении свинцовых аккумуляторов

Заявляемое изобретение относится к области электротехники и может быть использовано при производстве герметизированных свинцово-кислотных аккумуляторов с рекомбинацией газов. Повышение электропроводности и плотности тока разряда свинцово-кислотного аккумулятора за счет улучшения пропитки пористых активных масс электродов и сепараторов электролитом является техническим результатом изобретения. Сернокислый гелеобразный электролит, включающий серную кислоту, дистиллированную воду и оксид кремния, согласно предлагаемому изобретению дополнительно содержит сульфат натрия, а в качестве оксида кремния - Аэросил 200, с удельной поверхностью 175,0-225,0 м2/г, при следующем содержании компонентов, мас. %: сульфат натрия 0,9-1,3; Аэросил 200 4,9-5,3; серная кислота плотностью 1,83-1,84 г/см3 26,0-29,0; дистиллированная вода - остальное. Способ приготовления электролита включает порционное введение измельченных твердых компонентов в жидкие компоненты электролита и их перемешивание, при этом осуществляют подачу заданного количества серной кислоты плотностью 1,83-1,84 г/см3 в перемешиваемую дистиллированную воду для достижения плотности сернокислого электролита 1,24±0,005 г/см3, после чего электролит охлаждают до температуры не более 15°C, в электролит, перемешиваемый мешалкой с заданной скоростью вращения, равномерно подают сульфат натрия, перемешивают смесь до растворения сульфата натрия и после его растворения в перемешиваемую смесь равномерно подают Аэросил 200, перемешивают полученную смесь до образования геля и при значительном увеличении скорости вращения мешалки перемешивают полученный гель до обеспечения заданного значения его текучести. 2 н.п. ф-лы, 1 табл., 11 пр.

Изобретение относится к области электротехники, а именно к способу заполнения герметизированных свинцово-кислотных аккумуляторов гелеобразным сернокислым электролитом. Повышение удельной энергии и плотности тока разряда свинцово-кислотного аккумулятора за счет улучшения пропитки пористых активных масс электродов и сепараторов электролитом является техническим результатом изобретения. Способ включает заполнение герметизированного свинцового аккумулятора сернокислым гелеобразным электролитом путем создания разрежения газов в аккумуляторе, подачу в него электролита и выдержку для пропитки пористых активных масс электродов и сепараторов электролитом, при этом создание разрежения и подачу электролита производят циклически, а выдержку осуществляют при атмосферном давлении газов. Изготовленный аккумулятор обладает большей, на 15-20%, величиной плотности тока в номинальном и пиковом режимах разряда, а также повышенной, на 11-20%, емкостью и удельной энергией. Оптимальное значение разрежения газов в аккумуляторе при циклическом заполнении гелеобразным электролитом составляет 40-60 кПа, а длительность выдержки для пропитки пор активных масс аккумулятора составляет 20-30 секунд. 1 табл.
Наверх