Устройство ультразвукового контроля скорости осаждения кристаллов солей


G01N29 - Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы (G01N 3/00-G01N 27/00 имеют преимущество; измерение или индикация ультразвуковых, звуковых или инфразвуковых волн вообще G01H; системы с использованием эффектов отражения или переизлучения акустических волн, например акустическое изображение G01S 15/00; получение записей с помощью способов и устройств, аналогичных используемым в фотографии, но с использованием ультразвуковых, звуковых или инфразвуковых волн G03B 42/06)

Владельцы патента RU 2250459:

Открытое акционерное общество "Новосибирский завод химконцентратов" (RU)

Изобретение относится к методам контроля свойств технологических растворов. Предложено устройство ультразвукового контроля скорости осаждения кристаллов солей, содержащее измерительную камеру с размещенными на ней на разной высоте двумя электроакустическими преобразователями, коммутатор, генератор-приемник ультразвуковых колебаний и систему измерения и регистрации. Дополнительно содержит блок управления технологическими исполнительными органами, а система измерения и регистрации состоит из блока преобразования, блока обработки информации, блока накопления информации, блока индикации. В результате повышается качество контроля, способствующее получению кристаллов солей с заданными параметрами. 1 ил.

 

Изобретение относится к методам контроля свойств технологических растворов, а именно - к контролю скорости осаждения аммонийной соли, и может найти применение в различных отраслях промышленности.

Известен ультразвуковой гранулятор (см. АС №1430869, МКИ G 01 N 29/00, приоритет 29.12.86 г., опубл. бюллетень №38, 1988 г.), содержащий измерительную камеру, размещенные на ней на разной высоте два электроакустических канала, коммутатор, генератор, приемник, систему измерения и регистрации. Недостатком данного устройства является пассивный контроль кристаллов солей.

Наиболее близким по технической сущности и достигаемому результату является ультразвуковой гранулятор (см. АС №1635117, МКИ G 01 N 29/00, приоритет 01.08.88 г., опубл. бюллетень №10, 1991 г.) - прототип, содержащий измерительную камеру, размещенные на ней на разной высоте два электроакустических канала, аналоговый коммутатор, генератор-приемник, систему измерения и регистрации, недостатком которого является пассивный контроль.

Технической задачей изобретения является повышение качества конечного продукта за счет получения исходных растворов, содержащих кристаллы солей с заданными параметрами.

Поставленная задача решается тем, что устройство ультразвукового контроля скорости осаждения кристаллов солей, содержащее измерительную камеру с размещенными на ней на разной высоте двумя электроакустическими преобразователями, коммутатор, генератор-приемник ультразвуковых колебаний и систему измерения и регистрации, согласно изобретению, дополнительно содержит блок управления технологическими исполнительными органами, система измерения и регистрации состоит из блока преобразования, блока обработки информации, блока накопления информации, блока индикации, при этом вход блока преобразования соединен с выходом генератора-приемника, выход соединен с входом блока обработки информации, первый выход которого соединен с входом блока управления, второй выход соединен с входом блока накопления информации, третий выход соединен с первым входом блока индикации, а выход блока накопления соединен со вторым входом блока индикации, а первый и второй выходы блока управления соединены с исполнительными органами измерительной камеры, третий и четвертый выходы соединены с исполнительными органами технологической емкости, пятый выход соединен со входом коммутатора.

Указанная совокупность признаков является новой, не известной из уровня техники, и позволяет решить поставленную задачу, поскольку использование блока управления и системы измерения и регистрации позволяет от пассивного контроля перейти к активному с возможностью воздействия на технологический процесс получения кристаллов солей заданных параметров.

Сущность изобретения поясняется чертежом, где представлена блок-схема устройства ультразвукового контроля скорости осаждения кристаллов солей.

Устройство ультразвукового контроля скорости осаждения кристаллов солей содержит измерительную камеру 1 с размещенными на ней на разной высоте на фиксированном расстоянии двумя электроакустическими преобразователями 2 и 3, подсоединенными через коммутатор 4 к генератору-приемнику 5 ультразвуковых колебаний, выход которого соединен с блоком преобразования 6, выход которого подсоединен к блоку обработки информации 7, первый выход которого соединен со входом блока управления 8, второй выход соединен с входом блока накопления информации 9, третий выход соединен с первым входом блока индикации 10, а выход блока накопления информации 9 соединен со вторым входом блока индикации 10, а первый и второй выходы блока управления 8 соединены с исполнительными органами 11 и 12 (клапан подачи сжатого воздуха 11 и клапан “атмосфера” 12) измерительной камеры 1, а третий и четвертый выходы соединены с исполнительными органами 13 и 14 технологической емкости 15, пятый выход соединен с входом коммутатора 4.

Устройство ультразвукового контроля скорости осаждения кристаллов солей работает следующим образом.

При включении устройства по сигналу с блока управления 8 коммутатор 4 подключает электроакустический преобразователь 2 к генератору-приемнику ультразвуковых колебаний 5, закрывается клапан подачи сжатого воздуха 11, открывается клапан “атмосфера” 12, происходит заполнение измерительной камеры 1 раствором суспензии. После того как суспензия переходит в состояние покоя, начинает образовываться граница раздела фаз, при прохождении которой через горизонтальную плоскость ультразвукового луча электроакустического преобразователя 2 наблюдается резкое возрастание интенсивности отраженного сигнала от противоположной стенки измерительной камеры 1. Сигнал с электроакустического преобразователя 2 через коммутатор 4 принимается генератором-приемником 5 ультразвуковых колебаний, сигнал с которого поступает на блок преобразования 6. Блок преобразования 6 преобразует полученный сигнал в аналоговый сигнал, пропорциональный амплитуде сигнала с электроакустического преобразователя 2. Сигнал с блока преобразования 6 поступает в блок обработки информации 7, который начинает отсчет времени осаждения и выдает сигнал блоку управления 8 на разрешение переключения коммутатора 4 на электроакустический преобразователь 3. При прохождении границы раздела фаз через горизонтальную плоскость ультразвукового луча электроакустического преобразователя 3 также наблюдается резкое возрастание интенсивности отраженного сигнала от противоположной стенки измерительной камеры 1. Сигнал с электроакустического преобразователя 3 через коммутатор 4 принимается генератором-приемником ультразвуковых колебаний 5, сигнал с которого поступает на блок преобразования 6. Блок преобразования 6 преобразует полученный сигнал в аналоговый сигнал, пропорциональный амплитуде сигнала с пьезоэлектрического преобразователя 3. По сигналу с блока преобразования 6 блок обработки информации 7 прекращает отсчет времени осаждения кристаллов соли и вычисляет скорость осаждения. Сигнал с блока обработки информации 7 поступает на блок индикации 10 и в блок накопления информации 9 для создания архива. Сигнал с блока обработки информации 7 поступает на блок управления 8, который выдает сигналы на закрытие исполнительного органа "атмосфера" 12, открытие исполнительного органа подачи сжатого воздуха 11 для продувки измерительной камеры 1 от раствора суспензии.

В зависимости от величины измеренного значения скорости осаждения кристаллов соли блоком обработки информации 7 выдается сигнал на блок управления 8 на изменение расхода реагентов. Сигнал с блока управления 8 поступает на исполнительные органы подачи реагентов 13 и 14 для регулировки подачи количества реагентов в технологическую емкость 15.

После заданной временной задержки цикл измерения повторяется сначала. Таким образом, применение данного устройства с введением в него обратной связи позволяет получать растворы, содержащие кристаллы солей с заданными параметрами в автоматическом режиме, тем самым повышая качество конечного продукта.

Устройство ультразвукового контроля скорости осаждения кристаллов солей, содержащее измерительную камеру с размещенными на ней на разной высоте двумя электроакустическими преобразователями, коммутатор, генератор-приемник ультразвуковых колебаний и систему измерения и регистрации, отличающееся тем, что устройство дополнительно содержит блок управления технологическими исполнительными органами и система измерения и регистрации состоит из блока преобразования, блока обработки информации, блока накопления информации, блока индикации, при этом вход блока преобразования соединен с выходом генератора-приемника, выход соединен с входом блока обработки информации, первый выход которого соединен с входом блока управления, второй выход соединен с входом блока накопления информации, третий выход соединен с первым входом блока индикации, а выход блока накопления соединен со вторым входом блока индикации, а первый и второй выходы блока управления соединены с исполнительными органами измерительной камеры, третий и четвертый выходы соединены с исполнительными органами технологической емкости, а пятый выход соединен со входом коммутатора.



 

Похожие патенты:

Изобретение относится к измерительной технике и предназначено для измерения геометрии плоских емкостей, выполненных в виде параллелепипеда, используемых в ядерной технологии, в которых накапливается раствор и осадок после химического травления урановых сердечников.

Изобретение относится к измерению концентрации воды в смеси и может быть использовано для определения обводненности нефтяных скважин. .

Изобретение относится к области ультразвуковой техники и может быть использовано при конструировании ультразвуковых колебательных систем технологического назначения, например, таких, как устройства для очистки (ультразвуковые ванны), диспергирования, гомогенизации, эмульгирования веществ.

Изобретение относится к области неразрушающего контроля труб. .

Изобретение относится к неразрушающему контролю и может быть использовано для оценки повреждений одноосных конструкций с помощью свободных упругих колебаний. .
Изобретение относится к области неразрушающего контроля и может быть использовано для ультразвукового контроля цилиндрических изделий, например железнодорожных колес, бандажей, а также барабанов, шкивов и других изделий.

Изобретение относится к области неразрушающего контроля проката, в частности листов и полос. .

Изобретение относится к неразрушающему контролю для выявления скрытых дефектов трубопроводов. .

Изобретение относится к расходомерной технике на основе ультразвуковых преобразователей и может найти применение для контроля расхода текучих сред. .

Изобретение относится к области измерительной техники, в частности к измерительным приборам, может быть использовано при измерении расхода и объема жидкостей, протекающих в напорных трубопроводах.

Изобретение относится к контрольно-измерительной технике, в частности к устройствам для акустического измерения относительной скорости перемещения жидкой или газообразной среды, и может быть использовано в расходометрии.

Изобретение относится к измерительной технике и может быть использовано в системах автоматического контроля, управления и регулирования параметров технологических процессов, например, при определении расхода хозяйственно-питьевой и технической воды, используемой в промышленных целях.

Изобретение относится к измерительной технике и может быть использовано в системах автоматического контроля, управления и регулирования параметров технологических процессов, например при определении расхода хозяйственно-питьевой и технической воды, используемой в промышленных целях.

Изобретение относится к измерительной технике и может быть использовано в системах автоматического контроля, управления и регулирования параметров технологических процессов, например при определении расхода хозяйственно-питьевой и технической воды, используемой в промышленных целях.

Изобретение относится к измерительной технике и может быть использовано для измерения скорости и расхода различных жидкостей, в том числе оптически непрозрачных, например, нефти, сточных и технических вод, водопроводной воды в трубах большого диаметра, в открытых каналах и морях в экстремальных условиях эксплуатации
Наверх