Стекло, прозрачное в ик-области спектра

Изобретение относится к оптическим фторидным стеклам, прозрачным в ИК-области спектра, используемым в качестве перспективных материалов для ИК-оптики: ИК-пропускающие сердцевины оптических волокон, элементы оптических устройств, рабочих тел лазеров в различных оптических усилителях, планарных волноводах и в светотрансформирующих устройствах. Стекло содержит, мол.%: InF3 25 до 60, BaF2 10 до 40, ZnF2 5 до 40, BiF3 2,5 до 40. Для варьирования физико-химических показателей получаемого стекла оно может дополнительно содержать до 20 мол.% соединений, выбранных из группы LiF, NaF, KF, TlF, и/или до 35 мол.% соединений, выбранных из группы CdF2, SrF2, PbF2, EuF2, и/или до 15 мол.% соединений, выбранных из группы LaF3, PrF3, NdF3, SmF3, EuF3, GdF3, TbF3, DyF3, HoF3, ErF3, TmF3, YbF3, LuF3, AlF3, ScF3, GaF3, YF3, UF4. Техническим результатом изобретения является расширение ассортимента фторидных стекол, имеющих расширенную область пропускания света, широкий диапазон показателя преломления и одновременно обладающих высокой термической устойчивостью. 2 з. п. ф-лы, 1 табл., 1 ил.

 

Изобретение относится к области неорганических материалов, конкретно к оптическим фторидным стеклам, прозрачным в ИК-области спектра, используемым в качестве оптических волокон, элементов оптических устройств, планарных волноводов.

Фторидные стекла вызывают постоянно возрастающий практический интерес, являясь наиболее перспективным материалом для волоконных световодов со сверхнизкими оптическими потерями. В силу своих уникальных оптических и физико-химических характеристик: широкий диапазон спектральной прозрачности в удобном ИК-интервале, величины показателя преломления и дисперсии, чрезвычайная чувствительность оптических параметров к механическим воздействиям, высокая ионная проводимость и другие, фторидные стекла являются перспективными сверхпрозрачными материалами для волоконной оптики, перспективными сенсорными материалами и перспективными анионными твердыми электролитами. На сегодня получение устойчивых к кристаллизации фторидных стекол, расширение диапазона их пропускания, повышение коэффициентов преломления стекол является одной из актуальных задач технологии стекла.

Известно стекло на основе ZrF4(HfF4)-BaF2, содержащее ВiF3, интервал изменения концентраций в котором составляет, (мол.%): ZrF4 45-58, BaF2 14-28, ВiF3 18-39 и HfF4 42-57, BaF2 13-28, ВiF3 19-40. Стекло имеет достаточно широкий интервал показателя преломления nD, равный 1,52-1,62, но область пропускания только до 6 мкм (патент DD №248111, опубл. 29.07.87).

Наиболее близким к заявляемому является фторидное стекло на основе системы InF3-BaF2-ZnF2 с интервалом изменения концентраций (мол.%): InF3 15-60, BaF2 30-50, ZnF2 0-40, имеющее незначительный интервал показателей преломления nD 1,5-1,52, недостаточно высокую устойчивость к кристаллизации и диапазон пропускания до 7,5-8 мкм (G.Fonteneau, A.Bouaggad, & J.Lucas - A new familiy of indium based fluoride glasses with broad transmission range and good stability. Materials Science Forum. V.19-20. (1987) P.41-46).

Задача изобретения состоит в расширении ассортимента оптических фторидных стекол, имеющих расширенную область пропускания света, широкий диапазон показателя преломления и одновременно обладающих высокой термической устойчивостью к кристаллизации.

Поставленная задача достигается стеклом на основе фторидов индия, бария, цинка и дополнительно содержащим трифторид висмута при следующих соотношениях компонентов, (мол.%): InF3 25-60, BaF2 10-40, ZnF2 5-40, BiF3 2,5-40.

Впервые экспериментальным путем обнаружена область стеклования системы BiF3- InF3- BaF2- ZnF2 и определены ее концентрационные пределы, выход за которые приводит к образованию кристаллических или смеси кристаллических и стекольных фаз.

Стекло, полученное в пределах заявляемых концентраций, имеет область пропускания света до 9 мкм, широкий интервал изменения показателя преломления по от 1,52 до 1,62 и обладает повышенной термической устойчивостью к кристаллизации.

На чертеже представлены ИК-спектры наиболее часто применяемых на практике составов стекол (пластинки толщиной 1,2 мм): 1 - фторцирконатное (ZBLAN): 53ZrF4-20BaF2-20NaF-4LaF3-3AlF3; 2 - фториндатное (IBZT): 30InF3-30BaF2- 30ZnF2- 10ThF4 и 3 - заявляемое фториндийвисмутатное: 25ВiF3-30InF3-30ВаF2-15ZnF2. Представленные спектры записаны на спектрометре "Specord" M-80. Видно, что область пропускания заявляемого стекла сдвинута в длинноволновую часть спектра до 9 мкм.

Термограммы стекол заявляемого интервала составов, полученные на дериватографе Q-1500, показывают, что интервал ΔT=Ткристразм.крист - температура кристаллизации, Тразм - температура размягчения) для заявляемых составов стекол составляет 70-100°С, что позволяет говорить о высокой термической устойчивости к кристаллизации.

Синтез стекла осуществляют стандартным методом плавления шихты, приготовленной из соответствующих количеств фторидов. Плавление, как правило, проводят в электрической печи сопротивления при температуре 700-900°С в закрытом тигле. Затем расплав закаливают между двумя металлическими пластинами или выливают в форму с последующим отжигом в течение нескольких часов при температуре на 20-30 градусов ниже температуры размягчения стекла. Для уменьшения содержания кислородсодержащих примесей в стекле процесс плавления шихты может проводиться в атмосфере инертных и/или фторирующих газов, таких как SF6, NF3, продукты пиролиза фторопласта-4 и т.п.

В частных случаях осуществления изобретения стекло может содержать дополнительно фториды редкоземельных элементов в количестве до 15 мол.%, выбранных из группы LaF3, РrF3, NdF3, SmF3, ЕuF3, GdF3, ТbF3, DyF3, НоF3, ЕrF3, ТmF3, YbF3, LuF3, АlF3, ScF3, YF3, GаF3, UF4. Их введение приводит к возникновению как обычной, так и антистоксовой люминесценции, что позволяет использовать такие стекла в качестве рабочих тел лазеров, в оптических усилителях и в светотрансформирующих устройствах.

Для варьирования химико-физических показателей стекла, получения стекла с необходимыми значениями показателя преломления и температуры размягчения, что необходимо, например, при производстве оптического волокна, для которого требуется, чтобы сердцевина и оболочка имели одинаковые температуры размягчения и коэффициенты термического расширения, но разные показатели преломления, стекло может содержать дополнительно до 20 мол.% соединений, выбранных из группы LiF, NaF, KF, T1F, и/или до 35 мол.% соединений, выбранных из группы CdF2, SrF2, EuF2, РbF2 (Goldstein, N.P., Sun, K.H. "Calculation of refractive-index of a fluoride glass from its composition"// American Ceramic Society Bulletin 1979., V.58., N 12., PP.1182-1184; Macfarlane, D.R.; Newman, P.J.; Zhou, Z.P.; Javorniczky, J. "Systematic Study Of Refractive-Index Variations With Composition In Heavy-Metal Fluoride Glasses" // Journal Of Non-Crystalline Solids., 1993., V.161., PP.182-187); Poulain, M. "Overview Of Crystallization In Fluoride Glasses"// Journal Of Non-Crystalline Solids 1992., V140., N 1-3., PP.1-9).

Изобретение иллюстрируется следующими примерами:

Пример 1.

Навеску 10 г, содержащую 3,57 г (25 мол.%) ВiF3, 2,78 г (30 мол.%) InF3, 2,82 г (30 мол.%) BaF2 и 0,83 г (15 мол.% ZnF2) тщательно перемешивают и загружают в герметически закрывающийся стеклоуглеродный тигель, после чего нагревают в электрической печи сопротивления до температуры 800°С и выдерживают расплав при этой температуре в течение 10 мин до полного растворения компонентов. Затем расплав охлаждают до 600°С и закаливают между двумя металлическими пластинами. Полученный образец не содержит видимых кристаллических включений, рентгеноаморфен и на термограмме обнаруживает плечо, соответствующее температуре размягчения (250°С) и экзоэффект кристаллизации (350°С). Показатель преломления стекла (nD), измеренный иммерсионным методом (В.Б.Татарский. Кристаллооптика и иммерсионный метод определения вещества. Изд-во Ленинградского госуниверситета им. А.А.Жданова. Ленинград. 1949), при точности измерения метода 0,003 равен 1,579. Область пропускания стекла до 9 мкм, спектр представлен на чертеже.

Примеры 2-5 осуществляют так же, как пример 1. Конкретные составы шихты и некоторые характеристики получаемых стекол: температуры размягчения (Тразм.), кристаллизации (Ткрист.) и показатель преломления nD приведены в таблице.

Таблица
Состав стекла, мол. %TразмTкристΔТ=ТкристразмnD
InF3BiF3BaF2ZnF2MeFn
130253015 2503501001,579
235203015 240320801,568
325252515NaF

10
239301721,573
425252515GаF3

5
271356731,567
53030305PbF2

5
256340841,603

Таким образом, заявляемые стекла имеют расширенную область пропускания (до 8,5-9 мкм), широкий диапазон изменения коэффициента преломления nD, равный 1,52-1,62, и одновременно обладают высокой термической устойчивостью к кристаллизации, что позволяет расширить диапазон применения фторидных стекол, использовать их в качестве материалов для ИК-пропускающих оптических волокон с высокой апертурой, планарных волноводах, рабочих тел лазеров, в оптических усилителях и в светотрансформирующих устройствах.

1. Стекло, прозрачное в ИК-области спектра, включающее InF3 и BaF2 и ZnF2, отличающееся тем, что оно дополнительно содержит BiF3 при следующем соотношении компонентов, мол.%:

InF3 25-60

BaF2 10-40

ZnF2 5-40

BiF3 2,5-40

2. Стекло по п.1, отличающееся тем, что оно дополнительно содержит до 20 мол.% соединений, выбранных из группы LiF, NaF, KF, T1F и/или до 35 мол.% соединений, выбранных из группы CdF2, SrF2, РbF2, EuF2.

3. Стекло по любому из пп.1-2, отличающееся тем, что оно дополнительно содержит до 15 мол.% соединений, выбранных из группы LаF3, РrF3, NdF3, SmF3, ЕuF3, GdF3, ТbF3, DуF3, НоF3, ЕrF3, ТmF3, YbF3, LuF3, АlF3, ScF3, GаF3, YF3, UF4.



 

Похожие патенты:

Изобретение относится к теллургалогенидным стеклам, прозрачным в инфракрасной области спектра. .
Изобретение относится к волоконной оптике и касается разработки способа получения сульфидно-мышьяковых стекол для сердцевины и оболочки одномодовых и малоапертурных многомодовых световодов, используемых в оптике и приборах для ближнего и среднего ИК-диапазона.

Изобретение относится к составам халькогенидных стекол, используемых преимущественно в оптоэлектронике. .
Изобретение относится к области химии и может быть использовано для синтеза стекол GexS1-x(X= 0,1-0,5) особой чистоты. .
Изобретение относится к способам синтеза стекол AsxS1-x(х = 0,10-0,45), AsxSe1-x (х = 0-0,60) и может быть использовано в различных областях электронной техники, волоконной оптики, электронографии.

Изобретение относится к галогеносодержащим халькогенидным стеклам, прозрачным в инфракрасной области спектра. .

Изобретение относится к акустооптике, преимущественно к материалам, которые используются для изготовления светозвукопроводов акустооптических устройств (АОУ). .
Изобретение относится к химии, а именно к способам синтеза стеклообразного GeS2 . .

Изобретение относится к составам халькогенидных стекол, используемых, преимущественно в электронике. .
Изобретение относится к составам халькогенидных стекол, используемых для защиты и изоляции полупроводниковых приборов и интегральных схем
Изобретение относится к составам халькогенидных стекол, используемых в микроэлектронике
Изобретение относится к составам халькогенидных стекол, используемых в приборостроении
Изобретение относится к составам халькогенидных стекол, используемых в приборостроении
Изобретение относится к волоконной оптике и касается разработки способа получения халькогенидных стекол системы As-S с низким содержанием примеси кислорода в виде гидроксильных групп, молекулярной воды, диоксида углерода и может быть использовано для получения волоконных световодов, применяемых в оптике и приборах для ближнего и среднего ИК-диапазона
Изобретение относится к материалам для волоконной оптики и касается разработки способа получения особо чистых тугоплавких халькойодидных стекол, которые могут быть использованы для изготовления волоконных световодов, применяемых в оптике и оптоэлектронных приборах для ближнего и среднего ИК-диапазона

Изобретение относится к фторидным оптическим стеклам, обладающим способностью к люминесценции в диапазоне 1000-1700 нм при возбуждении излучением с длинами волн в пределах 400-1100 нм

Изобретение относится к технологии получения фторидных хлор- и бромсодержащих стекол с широким ИК-диапазоном пропускания и повышенной прозрачностью. Способ получения фторидных стекол включает плавление шихты из исходных компонентов в инертной атмосфере в платиновом или углеродном тигле с последующим выливанием расплава в металлическую литьевую форму и охлаждение расплава в форме. В шихту из смеси галогенидов, выбранных из ряда: HfF4; BaF2; BaCl2; LaF3; AlF3; InF3; NaF; NaBr дополнительно вводят 2÷3 мол.% предварительно высушенного при температуре до 100°C гидрофторида бария. Шихту загружают в тигель, который помещают в ампулу из кварцевого стекла, нагревают в токе инертного газа до температуры разложения гидрофторида и выдерживают в течение 20÷40 мин. Затем тигель накрывают графитовой пробкой, а зазор между пробкой и стенкой тигля заполняют порошком стекла того же состава, после чего в верхней части ампулы размещают металлическую литьевую форму. Ампулу герметизируют, промывают инертным газом и помещают в двухзонную печь сопротивления. Тигель нагревают до температуры на 250÷350°C выше температуры плавления шихты и выдерживают в течение 30÷50 минут, после чего температуру снижают на 120÷160°C, а форму, находящуюся в верхней части ампулы, нагревают во второй зоне печи сопротивления до температуры на 35÷45°C ниже температуры стеклования. Затем расплав охлаждают, а полученное стекло извлекают из формы. Предложенный способ позволяет получить фторидные хлор- или бромсодержащие стекла с малой концентрацией кислородсодержащих примесей и исключить испарения тяжелых галогенов. и 3 з.п. ф-лы, 1 табл., 1 ил., 3 пр.

Изобретение относится к химии, а именно к производству высокочистых стекол, которые могут быть использованы для изготовления оптических элементов, световодов и широкозонных полупроводников, применяемых в оптике и оптоэлектронных приборах ближнего и среднего ИК-диапазона. Задачей, на решение которой направленно заявляемое изобретение, является разработка способа получения высокочистых халькойодидных стекол, позволяющего уменьшить количество примесей, поступающих из материалов аппаратуры. Сущность предлагаемого способа получения высокочистых халькойодидных стекол заключается в том, что компоненты шихты постоянно поступают в проточный плазмохимический реактор, инициирование реакции взаимодействия халькогена и летучих йодидов производят плазменным разрядом, синтез стеклообразующих соединений проводят в условиях неравновесной плазмы высокочастотного емкостного разряда при пониженном давлении. Техническим результатом изобретения является снижение загрязняющих примесей в составе стекол. 2 табл., 2 пр.
Наверх