Способ зондирования в поле собственной поляризации горных пород

Изобретение относится к области геофизических исследований нефтегазоразведочных скважин. Заявленный способ заключается в измерении вдоль оси скважины потенциала собственной поляризации (ПС) горных пород и разностей потенциалов ПС между близкорасположенными электродами. По результатам измерений с помощью палеток (или по решению обратной задачи) определяют неискаженное внешними электрическими или электромагнитными полями значение потенциала ПС и статического потенциала горных пород. Технический результат: повышение точности измерений. 6 ил., 1 табл.

 

Изобретение относится к геофизическим исследованиям нефтегазоразведочных скважин.

Известен способ бокового каротажного зондирования (БКЗ), основанный на измерении вдоль оси скважины разностей потенциала поля постоянного тока, создаваемого на оси скважины токовым электродом [1, 2]. Разности потенциала поля постоянного тока измеряются между парами электродов, расположенными на расстоянии 0.4, 1.0, 2.0, 4.0 и 8.0 (м) друг от друга. Наличие в аппаратуре бокового электрического зондирования зондов, образованных парами электродов с различными расстояниями между ними, позволяет использовать измерения этих зондов для оценки качества измерения удельного электрического сопротивления горных пород в окружающем скважину пространстве и определения в результате интерпретации истинного удельного электрического сопротивления горных пород, неискаженного влиянием скважины и зоны проникновения бурового раствора.

Недостатком этого способа является невозможность оценки качества измерения потенциала собственной поляризации (ПС), так как в указанном способе измеряется разность потенциалов поля постоянного тока при включенном постоянном электрическом поле, в то время как каротаж собственной поляризации осуществляют при выключенном постоянном электрическом поле, т.е. в естественном поле собственной поляризации горных пород.

Известны также способы каротажа собственной (самопроизвольной) поляризации (ПС), включающие измерение потенциала ПС, его первой и второй разностных производных на оси скважины и определение по результатам измерений границ раздела пластов [3, 4].

К недостаткам этих способов следует отнести принципиальную невозможность оценки качества измерения потенциала ПС по его первой и второй разностным производным и некорректность процедуры восстановления потенциала ПС по производным.

В работе [5], представленной на Всероссийской конференции “Пути развития и повышения эффективности электрических и электромагнитных методов изучения нефтегазовых скважин” в 1999 году, анализируются результаты измерений первой разности потенциала ПС с фиксированным расстоянием между электродами 0,5 (м). Проведенные исследования показали более высокую расчленяющую способность первой разности потенциала ПС при выделении пластов в разрезе скважины. Однако восстановление самого потенциала ПС по его первой разности приводит к смещению восстановленной кривой потенциала ПС с глубиной, что является следствием некорректности процедуры восстановления. Попытка же избавиться от данного смещения с помощью многократного применения метода деления отрезка пополам для подавления линейного тренда приводит к увеличению погрешности восстановления (искажению) амплитуды потенциала ПС, что видно из приведенных авторами рисунков. Таким образом, измерение только одной первой разности потенциала ПС для корректного восстановления самого потенциала ПС явно недостаточно.

Целью заявляемого изобретения является оценка качества измерений потенциала собственной поляризации, повышение точности и информативности каротажа ПС с помощью зондирования поля собственной поляризации горных пород.

Цель достигается тем, что способ зондирования в поле собственной поляризации горных пород включает измерение потенциала собственной поляризации, измерение разностной реализации первой производной потенциала собственной поляризации между двумя электродами, расположенными на близком расстоянии на оси скважины, и определение по результатам измерений границ раздела пластов, а также в тех же точках измеряют разности потенциалов между электродами, количество которых не менее четырех, расположенными на расстоянии х=0.3-0.5 (м), 2*х (м), 4*х (м) и т.д., где х (м) - расстояние между двумя близлежащими электродами в метрах, и по результатам измерений с помощью соответствующих палеток (или в результате решения обратной задачи) определяют неискаженный внешними электрическими полями потенциал собственной поляризации и статический потенциал горных пород.

Сущность способа зондирования в поле собственной поляризации горных пород заключается в следующем.

Известно, что на амплитуду потенциала самопроизвольной поляризации влияют такие факторы, как, например, блуждающие теллурические токи, гальванопотенциалы, мгновенно изменяющиеся в силу каких-либо причин (например, в случае изменения электрохимического равновесия), электрохимические потенциалы вблизи измерительных электродов и т.д. Погрешности, вносимые в измеряемый потенциал собственной поляризации такими сторонними полями, являются неконтролируемыми и существенно сказываются на этапе интерпретации результатов измерений. Поэтому естественно, во избежание искажения измеряемого сигнала, регистрировать не потенциал одного единственного электрода относительно удаленного на земную поверхность электрода, как это делается в стандартном каротаже ПС, а, как минимум, разность потенциалов двух близкорасположенных электродов, на которые одинаково влияют все указанные выше сторонние потенциалы и которые вычитаются при измерении такой разности потенциалов. Измеряя не одну, а несколько разностей потенциалов между близко расположенными, но на различном расстоянии электродами, мы будем иметь несколько измеренных величин для дальнейшей оценки качества измерений, более уверенного расчленения геологического разреза на отдельные пласты и интерпретации полученных измерений, особенно в часто встречающемся случае тонкого переслаивания глин и песчаников.

Известно, что информативность любого метода ГИС зависит от его вертикальной разрешающей способности и точности измерений.

Вертикальную разрешающую способность метода ПС и его различных модификаций можно оценивать по конечному результату определения реальных геологических границ, т.е. по соотношению количества тех физических границ пластов, которые уверенно выделяются и могут быть использованы для геологических целей.

Оптимальное соотношение между амплитудой измеряемого сигнала и его разрешающей способностью можно оценивать, рассчитывая отношение , между минимальной амплитудой сигнала соответствующей реальному пласту, и количеством экстремумов сигнала соответствующих границам пластов в исследуемом интервале:

То есть, с одной стороны, амплитуда измеряемого сигнала должна превышать допустимую 5%-ную погрешность измерения собственно аномалии ПС [1], с другой стороны, аномалии должны соответствовать реальным границам пластов.

Расчеты по формуле (1), представленные в таблице, показывают, что величина имеет наименьшее значение для зонда ПС с расстоянием Δ между электродами, равным 0,4 (м).

Таблица. Оценка оптимального расстояния между электродами.

Δ(м)0,20,40,6
(мB)8,008,5012,00
698
1,300,941,50

Анализ таблицы показывает, что при расстоянии между электродами 0,4 (м) получается наиболее оптимальное соотношение между амплитудой измеряемого сигнала и его разрешающей способностью, чем при расстояниях 0,2 или 0,6 (м).

На чертежах представлены:

Фиг.1. Результат математического моделирования измерений потенциала собственной поляризации и разностей потенциалов собственной поляризации с расстоянием между электродами 0,4; 0,8 и 1,6 метра соответственно в скважине, пересекающей пачку электрически неоднородных пластов с различными радиусами зоны проникновения.

Фиг.2. Результат натурных измерений в скважине потенциала собственной поляризации и разностей потенциалов собственной поляризации с расстоянием между электродами 0,4; 0,8 и 1,6 метра соответственно в скважине, пересекающей пачку электрически неоднородных пластов с различными радиусами зоны проникновения.

Фиг.3. Методический прием для оценки качества записи потенциала собственной поляризации по измерениям разностей потенциалов собственной поляризации с расстоянием между электродами 0,4; 0,8 и 1,6 метра соответственно.

Фиг.4. Графики (палетки) зависимости разности потенциалов от расстояния между электродами ΔZ. Шифр кривых - (отношение удельного электрического сопротивления пласта ρП к удельному электрическому сопротивлению скважины ρС). Оба графика построены для пласта толщиной h=1,4 (м), для отношения удельного электрического сопротивления зоны проникновения к удельному электрическому сопротивлению пласта , для отношения удельного электрического сопротивления вмещающих пород к удельному электрическому сопротивлению скважины , для отношения диаметра зоны проникновения к диаметру скважины . а) ЕПС=100 (мВ); б) ЕПС=60 (мВ).

Фиг.5. Компоновка скважинного устройства

Фиг.6. Функциональная схема устройства сбора данных блока электроники аппаратуры, изображенной на фиг.5.

Как показали результаты математического моделирования (фиг. 1) и результаты измерений в скважине (фиг. 2), с увеличением расстояния между измерительными электродами измеренная разность потенциалов стремится к потенциалу собственной поляризации, измеряемого стандартным способом, т.е. когда измеряется потенциал электрода в скважине относительно электрода, расположенного на поверхности земли около устья скважины. Причем, чем меньше толщина исследуемого в скважине пласта-коллектора и чем выше удельное электрическое сопротивление этого пласта (высокими удельными электрическими сопротивлениями, как правило, отмечаются нефте- и газонасыщенные пласты), тем быстрее выходит значение разности потенциалов электродов на значение потенциала собственной поляризации (фиг. 3, 4). Этот факт свидетельствует в пользу того обстоятельства, что предлагаемое измерение нескольких разностей потенциалов между близко расположенными, но на различных расстояниях друг от друга электродами может быть эффективно использовано для исследования разрезов скважин, сложенных тонкими пластами, что на настоящем уровне развития нефтепромысловой геофизики является серьезной проблемой.

Таким образом, для того чтобы построить кривую зондирования в поле собственной поляризации горных пород, нам необходимо измерение как минимум трех разностей потенциалов между, как минимум, четырьмя электродами, расположенными на следующих расстояниях друг от друга:

1. Расстояние между электродом №1 и электродом №2 равно 0,3-0,5 метров.

2. Расстояние между электродом №1 и электродом №3 равно удвоенному расстоянию между электродом №1 и электродом №2.

3. Расстояние между электродом №1 и электродом №4 равно учетверенному расстоянию между электродом №1 и электродом №2.

4. и т.д.

В качестве примера рассмотрим зондирование околоскважинного пространства устройством с электродами, расположенными на расстояниях 0.4, 0.8 и 1.6 метра друг от друга.

Используя значения , и , полученные в результате интерпретации комплекса электрометрии скважины, и откладывая значения измеренных экстремальных значений разностей потенциалов ΔUПС с расстоянием между измерительными электродами 0.4, 0.8 и 1.6 метра, на графике (палетке) зависимости ΔUПС=f(Δz), рассчитанной по решению прямой задачи метода собственной поляризации (фиг.3, 4) [6], по асимптотике найденной кривой определяем значение потенциала собственной поляризации UПС и статического потенциала ЕПС. Сопоставление полученного асимптотического значения потенциала собственной поляризации с измеренным значением потенциала собственной поляризации позволяет оценить качество измеренного потенциала собственной поляризации, иными словами, оценить погрешность измерения потенциала собственной поляризации. Реализация данного способа каротажа может быть осуществлена при помощи зондового устройства с четырьмя, пятью или более одинаково сближенными электродами, расположенными на жестком корпусе на одной прямой на одинаковом расстоянии друг от друга. Примерная конструктивная компоновка скважинного устройства приведена на фиг.5. Снимаемые с электродов потенциалы подаются на измерительную схему. Измерительная схема последовательно детектирует потенциал второго электрода U2 относительно первого электрода U1, затем - потенциал третьего электрода U3 относительно первого электрода U1, затем - потенциал пятого электрода U5 относительно первого U1 и т.д. Для измерения самого потенциала собственной поляризации выделен четвертый электрод U4, потенциал которого измеряется относительно электрода N, расположенного на дневной поверхности. С дифференциальных усилителей (У) измеренные сигналы подаются на аналоговые цифровые преобразователи (АЦП), откуда обработанный сигнал передается на устройство управления устройства сбора данных блока электроники, как показано на фиг. 6.

Использование предлагаемого способа зондирования в поле собственной поляризации горных пород позволит, по сравнению с существующими способами, повысить точность регистрации кривой потенциала собственной поляризации в скважине, осуществлять контроль качества регистрации кривой потенциала собственной поляризации другими, выпускаемыми серийно приборами. Кроме того, возможность оценки потенциала собственной поляризации по измеренным разностям потенциалов собственной поляризации с различными расстояниями между измерительными электродами позволяет использовать предлагаемую конструкцию скважинного прибора для расчленения карбонатных разрезов на пласты, где стандартные способы измерения потенциалов собственной поляризации практически неинформативны.

Литература.

1. Техническая инструкция по проведению геофизических исследований и работ приборами на кабеле в нефтяных и газовых скважинах (РД 153-39.0-072-01). Москва, 2001.

2. Итенберг С.С. Интерпретация результатов геофизических исследований скважин: Учеб. пособие для вузов. - М.: Недра, 1987. 375 с., ил.

3. Патент США №4523148, кл. G 01 V 3/18, 3/38, 1985.

4. Патент РФ №1749874 А1, кл. G 01 V 3/18, 1993 (Прототип).

5. Манштейн А.К., Эпов М.И. Применение записей градиента потенциала самопроизвольной поляризации. В кн.: “Электрические и электромагнитные методы исследований в нефтегазовых скважинах”. Новосибирск, Издательство СО РАН, 1999.

6. Кузьмичев О.Б., Баймухаметов Д.С., Ливаев Р.З. Особенности интерпретации данных ПС при исследовании тонкослоистых разрезов терригенных отложений Западной Сибири. В кн: “Проблемы нефтегазового комплекса Западной Сибири и пути повышения его эффективности (I научно-практическая конференция)”. - Когалым, 2001, с.152-157.

Способ зондирования в поле собственной поляризации горных пород, включающий измерение потенциала собственной поляризации, а также измерение разностной реализации первой производной потенциала собственной поляризации между двумя электродами, расположенными на близком расстоянии на оси скважины, и определение по результатам измерений границ раздела пластов, отличающийся тем, что в тех же точках измеряют разности потенциалов между электродами, количество которых не менее четырех, расположенными на расстоянии х=0,3-0,5 (м), 2·х (м), 4·х (м) и т.д., где х (м) - расстояние между двумя близлежащими электродами в метрах, 2·х(м) - расстояние между электродом 1 и электродом 3, равное удвоенному расстоянию между двумя близлежащими электродами, 4·х(м) - расстояние между электродом 1 и электродом 4, равное учетверенному расстоянию между двумя близлежащими электродами, и по результатам измерений, с помощью соответствующих палеток (или в результате решения обратной задачи), определяют неискаженный внешними электрическими полями потенциал собственной поляризации и статический потенциал горных пород.



 

Похожие патенты:

Изобретение относится к кабелям для геофизических исследований. .

Изобретение относится к области интерпретации измерений, выполненных посредством инструментов индукционного каротажа для определения содержания пластовых флюидов.

Изобретение относится к области геофизических методов исследований и предназначено для передачи данных от контрольно-измерительных приборов в скважине к наземной аппаратуре.

Изобретение относится к геофизическим исследованиям скважин и может найти применение при проведении скважинного сейсмического профилирования в крутонаклонных и горизонтальных скважинах.

Изобретение относится к нефтяной геофизике и может быть использовано при геофизических исследованиях наклонных и горизонтальных скважин. .

Изобретение относится к геофизическим исследованиям скважин и может быть использовано для измерения потенциала самопроизвольной поляризации (ПС), предпочтительно, в скважинах, бурящихся на нефть и газ и имеющих горизонтальное завершение.

Изобретение относится к геофизическим исследованиям скважин, в частности к определению электрического сопротивления пород в скважинах. .

Изобретение относится к кабельной технике и может быть использовано для проведения работ и исследований в нефтяных и газовых скважинах. .

Изобретение относится к области геофизических исследований скважин и может найти применение при определении электрического сопротивления окружающих скважину пластов горных пород и его изменения в радиальном направлении относительно оси скважины, вызванного проникновением бурового раствора в пласт.

Изобретение относится к области промысловой геофизики и предназначено для контроля глубинных параметров в процессе эксплуатации скважин и передачи регистрируемых параметров на поверхность.

Изобретение относится к геофизическим исследованиям скважин и может быть использовано для измерения удельного электрического сопротивления скважинной жидкости

Изобретение относится к геофизике и может быть использовано для мониторинга технического состояния обсадных и насосно-компрессорных труб при одноколонной и многоколонной конструкциях в эксплуатационных и разведочных нефтегазовых скважинах

Изобретение относится к области геофизических исследований скважин, к способам и устройствам для разведки

Изобретение относится к области разведочной геофизики и может быть использовано для опробования взрывных и эксплуатационно-разведочных скважин
Изобретение относится к геофизике, а именно к геофизическим исследованиям скважин для выделения углеводородных пластов

Изобретение относится к области электротехники, в частности к скважинным телеметрическим системам для передачи сигналов между наземным устройством и скважинным прибором, размещенным в стволе скважины

Изобретение относится к кабелям для геофизических исследований

Изобретение относится к беспроводной связи посредством радиосигналов, предназначенной для использования при анализе геологических формаций

Изобретение относится к области геофизических исследований в скважинах, а именно к приборам электрического каротажа в процессе бурения
Наверх