Солнечный модуль со стационарным концентратором

Изобретение относится к гелиотехнике, в частности к солнечным модулям со стационарными концентраторами для получения электричества и тепла. Солнечный модуль состоит из приемника излучения с двухсторонней рабочей поверхностью и стационарного параболоцилиндрического концентратора, имеющего в поперечном сечении две параболические ветви, развернутые вокруг оптического фокуса на углы α, и воспринимающую поверхность излучения шириной D1, равной расстоянию между точками касания к ветвям парабол касательных, расположенных под углами α к плоскости симметрии концентратора, причем концентратор содержит дополнительные участки ветвей парабол, расположенных от точек касания касательных, расположенных под углами α к плоскости симметрии концентратора, до точек касания касательных, расположенных под углами β к плоскости симметрии концентратора, причем β<α, с шириной воспринимающей поверхности D2, причем D2>D1. Модуль должен обеспечить увеличение среднегодовой выработки энергии и снижение ее себестоимости. 2 ил.

 

Изобретение относится к гелиотехнике, в частности к солнечным модулям со стационарными концентраторами для получения электричества и тепла.

Известен солнечный модуль со стационарным концентратором, выполненным в виде параболоцилиндического фоклина, представляющего собой две цилиндрические поверхности с образующими параболами, симметричные относительно оси симметрии, и плоского одностороннего приемника, расположенного в плоскости, проходящей через линию фокуса образующих парабол параллельно миделю концентратора (патент США на изобретение № 3923381 от 2 декабря 1975 г, hit C1. G 02 b 5/10, U.S. C1. 350/293).

Недостатком известного технического устройства является его низкий коэффициент геометрической концентрации. Коэффициент геометрической концентрации К фоклина определяется значением параметрического угла α : K=1/sinα . Для стационарного режима работы параметрический угол α фоклина должен быть не менее α =±23,5° , при этом коэффициент геометрической концентрации К составляет K=1/sin 23,5° =2,5.

Наиболее близким по технической сущности к предлагаемому изобретению является солнечный модуль, состоящий из приемника излучения с двухсторонней рабочей поверхностью и стационарного параболоцилиндрического концентратора, имеющего в поперечном сечении две параболические ветви, развернутые вокруг оптического фокуса на углы α , и воспринимающую поверхность излучения шириной D1, равной расстоянию между точками касания к ветвям парабол касательных, расположенных под углами α к плоскости симметрии концентратора (А Luque ed., Adam Hilger. Solar Cells and Optics for Photovoltaic Concentration. - Bristol, UK, 1989, стр.381-395).

Недостатком известного солнечного модуля со стационарным концентратором является неравномерность использования солнечного излучения в течение всего года. При азимутальном угле ориентации плоскости симметрии концентратора ψ =90° -ϕ , где ϕ - широта местности, при склонении солнца δ , близком к значению δ =±23,5° , солнечное излучение на небольшое время попадает в пределы параметрического угла концентратора и приходит на приемник излучения таким образом, что летом при самом длительном световом дне график облученности приемника имеет провал, что отражается на выработке энергии (линия 1 фиг.1).

Задачей предлагаемого изобретения является увеличение выработки энергии модулем в течение всего года.

Вышеуказанный технический результат достигается тем, что в солнечном модуле, состоящем из приемника излучения с двухсторонней рабочей поверхностью и стационарного параболоцилиндрического концентратора, имеющего в поперечном сечении две параболические ветви, развернутые вокруг оптического фокуса на углы α , и воспринимающую поверхность излучения шириной D1, равной расстоянию между точками касания к ветвям парабол касательных, расположенных под углами α к плоскости симметрии концентратора, концентратор содержит дополнительные участки ветвей парабол, расположенных от точек касания касательных, расположенных под углами α к плоскости симметрии концентратора, до точек касания касательных, расположенных под углами β к плоскости симметрии концентратора, причем β <α , с шириной воспринимающей поверхности D2, причем D2>D1.

Экспериментальные данные и теоретические расчеты показали, что в результате использования предлагаемого солнечного модуля со стационарным концентратором с углами разворота параболических ветвей вокруг оптического фокуса α =27,5° , дополнительными участками ветвей парабол до точек касания касательных поверхностей с углами β =23,5° увеличивается облученность приемника и среднегодовая выработка энергии (линия 2 фиг.1). При этом среднегодовая выработка будет больше как по сравнению с концентратором при α =23,5° , β =23,5° (линия 1 фиг.1), так и по сравнению с концентратором при α =27,5° , β =27,5° (линия 3 фиг.1) без дополнительных участков ветвей парабол. Среднегодовая выработка предлагаемого солнечного модуля увеличивается на 50% и составляет 150% по сравнению с прототипом.

Сущность предлагаемого изобретения поясняется на фиг.2.

На фиг.2 представлен солнечный модуль со стационарным концентратором.

Солнечный модуль состоит из приемника излучения 1 с двухсторонней рабочей поверхностью 2 и стационарного параболоцилиндрического концентратора 3, имеющего в поперечном сечении две параболические ветви AO1 и ВО2, развернутые вокруг оптического фокуса F на углы α , и воспринимающую поверхность излучения шириной D1, равной расстоянию между точками касания А и В к ветвям парабол AO1 и ВО2 касательных 4 и 5, расположенных под углами α к плоскости симметрии 6 концентратора 3, концентратор 3 содержит дополнительные участки ветвей парабол АА’ и ВВ’ , расположенных от точек касания А и В касательных 4 и 5, расположенных под углами а к плоскости симметрии 6 концентратора 3, до точек касания А’ и В’ касательных 7 и 8, расположенных под углами β к плоскости симметрии 6 концентратора 3, причем β <α , с шириной воспринимающей поверхности D2, причем D2>D1.

Кроме того, на фиг.2 указано: ψ - азимутальный угол ориентации плоскости симметрии концентратора.

Предлагаемый солнечный модуль со стационарным концентратором работает следующим образом.

При углах склонения солнца, близких к δ =±23,5° , лучи приходят на ветвь B’ O2 параллельно оптической оси этой ветви и, следовательно, фокусируются точно в фокус F. Другая ветвь параболы A’ O1 создает скользящий по ее поверхности поток световых лучей, который приходит на поверхность 2 приемника излучения 1 между фокусом F и вершиной О концентратора 3. Если углы α ≤ 23,5° , то в дни летнего (зимнего) солнцестояния солнечное излучение не попадет в пределы параметрического угла 2α концентратора 3 и выработка энергии в этот период резко снижается (линия 1 фиг.1).

Для того чтобы в дни солнцестояния солнечное излучение дольше находилось в пределах параметрического угла 2α концентратора 3 и попадало на приемник 1, необходимо увеличить параметрический угол α >23,5° . Расчеты показывают, что оптимальным с точки зрения выработки является угол α =27,5° при угле β =23,5° . Таким образом, при помощи участков ветвей парабол АА’ и ВВ’ можно добиться увеличения продолжительности работы стационарного концентратора 3 при незначительном изменении коэффициента геометрической концентрации, в результате чего увеличится выработка энергии.

Предлагаемое устройство может быть реализовано в системах комбинированного тепло- и электроснабжения, а также в качестве самостоятельного автономного устройства, предназначенного для выработки тепловой или электроэнергии. В результате использования предлагаемого устройства будет увеличена среднегодовая выработка энергии до 50%, что позволит снизить стоимость выработки энергии.

Солнечный модуль, состоящий из приемника излучения с двухсторонней рабочей поверхностью и стационарного параболоцилиндрического концентратора, имеющего в поперечном сечении две параболические ветви, развернутые вокруг оптического фокуса на углы α, и воспринимающую поверхность излучения шириной D1, равной расстоянию между точками касания к ветвям парабол касательных, расположенных под углами α к плоскости симметрии концентратора, отличающийся тем, что концентратор содержит дополнительные участки ветвей парабол, расположенных от точек касания касательных, расположенных под углами α к плоскости симметрии концентратора, до точек касания касательных, расположенных под углами β к плоскости симметрии концентратора, причем β<α, с шириной воспринимающей поверхности D2, причем D2>D1.



 

Похожие патенты:

Изобретение относится к гелиоэнергетике, в частности к солнечным энергетическим модулям с концентраторами для получения электрической энергии и теплоты. .

Изобретение относится к гелиотехнике, в частности к солнечным модулям со стационарными концентраторами для получения электричества и тепла. .

Изобретение относится к гелиоэнергетике, в частности к солнечным энергетическим модулям с концентраторами для получения теплоэлектроэнергии. .

Изобретение относится к гелиоэнергетике, в частности к солнечным энергетическим модулям с концентраторами, для получения электрической энергии и теплоты. .

Изобретение относится к солнечной энергетике и может найти применение в солнечных электростанциях для преобразования солнечной энергии в электрическую, а кроме того может быть использовано в качестве энергетической установки индивидуального пользования.

Изобретение относится к солнечной энергетике и может найти применение в гелиоустановках для получения электрической энергии и в нагревательных солнечных установках.

Изобретение относится к солнечной энергетике и может найти применение в солнечных электростанциях для преобразования солнечной энергии в электрическую или в энергетической установке индивидуального пользования.

Изобретение относится к гелиоэнергетике, в частности к солнечным энергетическим модулям с концентраторами для получения электрической энергии и теплоты. .

Изобретение относится к гелиоэнергетике, в частности к солнечным энергетическим модулям с концентратором, в котором солнечное излучение собирается параболоцилиндрическим фоклином, выполненным из двух параболоцилиндров.

Изобретение относится к энергетике, в частности к солнечным фотоэлектрическим модулям с концентраторами солнечного излучения для получения электричества и тепла.

Изобретение относится к области использования солнечной энергии для обеспечения энергетических нужд на производстве и в быту, преимущественно для опреснения соленой воды

Изобретение относится к солнечной энергетике и может найти применение в гелиоустановках специального назначения, в которых используется только ультрафиолетовая часть солнечного излучения, в установках для обеззараживания воды и в других установках аналогичного назначения

Изобретение относится к гелиоэнергетике, в частности к конструкции параболоцилиндрических концентраторов солнечной энергии для переработки отходов масложировой промышленности и получения низкозамерзающих охлаждающих жидкостей

Изобретение относится к гелиотехнике, в частности, к переработке отходов масложировой промышленности с применением параболоцилиндрических концентратов солнечного излучения

Изобретение относится к гелиоэнергетике, в частности к солнечным энергетическим модулям с концентратором для получения электрической энергии

Изобретение относится к области гелиотехники

Изобретение относится к солнечной энергетике и может найти свое применение в широком диапазоне использования в зависимости от рабочей площади концентратора, а именно: от получения горячей воды для бытовых нужд до получения высокопотенциальной энергии перегретого пара

Изобретение относится к солнечной энергетике, в частности к солнечным энергетическим установкам с концентраторами солнечного излучения для выработки электроэнергии и высокопотенциального тепла

Изобретение относится к гелиоархитектуре и гелиоэнергетике, в частности к солнечным зданиям со встроенными солнечными энергетическими установками для получения электрической энергии и теплоты

Изобретение относится к области гелиотехники, в частности касается создания солнечных установок с концентраторами солнечного излучения для выработки электричества и тепла
Наверх