Способ получения твердого хлоралюминийсодержащего коагулянта

Изобретение относится к способам получения коагулянта на базе основных хлоридов алюминия. Данный коагулянт может быть использован для очистки природных и сточных вод от взвесей и обладает дезинфицирующими свойствами по отношению к патогенным микроорганизмам, позволяющим получать питьевую воду в экстремальных условиях при индивидуальном применении в виде таблеток. Твердый хлоралюминийсодержащий коагулянт получают из жидкого коллоидного раствора гидроксохлорида алюминия с динамической вязкостью 90-180 Па·с, который подвергают взаимодействию с гесаметилентетраамином в массовом соотношении 1:(0,01-0,10) соответственно. Процесс получения твердого коагулянта протекает при комнатной температуре без затраты энергии в течение короткого времени. Из полученного продукта легко получить таблетки, что удобно для индивидуального применения в экстремальных условиях при получении питьевой воды. 2 табл.

 

Изобретение относится к способам получения коагулянта на базе основных хлоридов алюминия. Данный коагулянт может быть использован для очистки сточных и природных вод от взвесей и обладает дезинфицирующим действием по отношению к болезнетворным организмам, позволяет получать питьевую воду в экстремальных условиях при индивидуальном применении.

Известен способ получения гидроксохлорида алюминия (ГОХА), заключающийся в обработке металлического алюминия хлороводородной кислотой различной концентрации (А.С. СССР, №618343, кл. С 01 F 7/56, опубл.05.08.78).

Однако в этом случае получается жидкий ГОХА, который обладает повышенной коррозионной активностью за счет свободной хлороводородной кислоты, образующейся вследствие гидролиза ГОХА. Это требует применения специальной возвратной упаковочной тары и вызывает неудобства при использовании ГОХА в качестве коагулянта в экстремальных условиях.

Для устранения этих неудобств необходимо перевести коагулянт в более удобную твердую форму.

Известен способ получения твердого ГОХА путем периодического нагрева до 70°С с последующим охлаждением до 0°С водного раствора хлорида алюминия. С течением времени при 30-40°С выделяется твердый ГОХА (Патент №49-43478, Япония, опубл. 21.11.1974).

Недостатком этого метода являются большие энергетические затраты на нагрев и охлаждение. Кроме того, резко возрастает время получения конечного продукта.

Известен также способ получения твердого ГОХА путем кипячения раствора хлорида алюминия в течение 2-4 часов с последующей сушкой распылением (Патент №390471, США, опубл. 09.09.70).

Недостатком этого метода является применение специального оборудования для слишком жидкого продукта, высокие энергетические затраты и длительное время перевода ГОХА из жидкого состояния в твердое.

Наиболее близким является способ получения твердого ГОХА путем обработки жидкого коллоидного раствора гидроксохлорида алюминия хлоридами или сульфатами металлов или природным бишофитом (Патент Ru №2122973, МКИ С 01 F 7/ 00, 7/56, опубл.10.12. 98, бюл.№34).

К причинам, препятствующим достижению требуемого технического результата при использовании известных способов, относятся следующие:

во-первых, при использовании хлоридов и сульфатов металлов, а также природного бишофита в качестве гелеобразующих компонентов наблюдается увеличение солесодержания в очищаемой воде, приводящее к стабилизации частиц взвести за счет адсорбции, что требует дополнительного расхода ГОХА;

во-вторых, уменьшается интервал дозировок, что приводит либо к стабилизации дисперсии, либо к резкому возрастанию скорости гидролиза ГОХА за счет увеличения ионной силы раствора на стадии ввода коагулянта и перемешивания. Образующиеся флокулы из продуктов гидролиза ГОХА и дисперсной фазы очищаемой воды разрушаются, трудно оседают в отстойниках. Это приводит к уменьшению производительности фильтров. Кроме того, резко сокращается время цикла работы фильтров;

в-третьих, некоторые хлориды и сульфаты металлов и природный бишофит, введенные в ГОХА для перевода его в твердое состояние, сообщают ему гигроскопичность, что приводит к слеживаемости при длительном хранении в неблагоприятных условиях.

В предлагаемом изобретении решается важная задача получения твердого основного хлорида алюминия, применяемого в качестве коагулянта и обладающего высокой противомикробной и противобактериальной активностью при очистке природной воды в экстремальных условиях.

При реализации предлагаемого способа получения твердого ГОХА получают следующий технический результат:

во-первых, процесс получения твердого ГОХА идет при значительно меньшей концентрации гексаметилентетрамина, который является структурирующим агентом, что снижает стоимость конечного продукта, а также дополнительно не вносит в очищаемую воду веществ, ухудшающих качество очистки;

во-вторых, полученный твердый продукт обладает сильным противомикробным и противобактериальным действием, поскольку предлагаемый реагент применяют в медицине как дезинфицирующее вещество;

в третьих, полученный твердый коагулянт обладает более высокой флокулирующей активностью (более крупные хлопья, чем при применении солей и природного бишофита). Это связано с тем, что при гидролизе полученного коагулянта высвобождается четырехзарядный катион, который служит дополнительным коагулирующим агентом;

в-четвертых, структурирующий агент в кислой и нейтральной средах обладает большим положительным зарядом по сравнению с применяемыми электролитами, что позволяет уменьшить концентрацию структурирующего агента по сравнению с прототипом.

Указанный технический результат при осуществлении изобретения достигается тем, что берут жидкий коллоидный раствор гидроксохлорида алюминия с динамической вязкостью 90-180 Па·с и подвергают взаимодействию с гексаметилентетрамином (ГМТА) в массовом соотношении 1:(0,01-0,10) соответственно.

При добавлении к коллоидному раствору ГОХА ГМТА в различных количествах, наблюдается возрастание вязкости ГОХА, и при добавлении оптимальной дозы ГМТА (заявляемые соотношения) он переходит в твердое состояние. Выделение дисперсионной среды (вода) не происходит.

В процессе образования твердого алюминийсодержащего коагулянта из коллоидных растворов ГОХА при добавлении ГМТА происходит образование комплексных соединений между атомами азота из ГМТА и ионами алюминия, при этом происходит структурирование по типу гелей.

Процесс получения твердого коагулянта протекает при комнатной температуре без затраты энергии в течение короткого времени. Из полученного продукта легко получать таблетки, что удобно для индивидуального применения в экстремальных условиях при получении питьевой воды.

Жидкий хлоралюминийсодержащий коагулянт с динамической вязкостью 90-180 Па·с получают растворением металлического алюминия в хлороводородной кислоте. В колбу емкостью 2 л вносят 1,5 л 10% хлороводородной кислоты и порциями добавляют гранулированный алюминий до тех пор, пока динамическая вязкость не станет равной 90-180 Па·с. Температура процесса растворения 70-95°С.

Способ осуществляется следующим образом.

Полученный коллоидный раствор ГОХА переводят в твердое состояние путем добавления ГМТА при перемешивании для равномерного его распределения по объему.

Изобретение иллюстрируется следующими примерами.

ПРИМЕР 1. В этом примере обусловлено получение твердого ГОХА путем перевода его из жидкого коллоидного состояния в твердое под действием ГМТА

В стакан емкостью 100 мл вносят 20 г жидкого коллоидного раствора ГОХА с различной динамической вязкостью и добавляют в него различное содержание ГМТА согласно табл.1. Температура смешения 20°С.

Как видно из табл.1, переход ГОХА из жидкого состояния в твердое под действием ГМТА происходит при значительно меньших концентрациях, чем в случае присутствия солей металлов по прототипу.

Выбор интервала концентраций вводимого ГМТА (1:0,01) ограничивается по нижнему пределу большим временем перехода ГОХА в твердое состояние; по верхнему пределу (1:0,10) лимитируется тем, что при использовании полученного продукта в качестве коагулянта для очистки природной воды возможно превышение ПДК по ГМТА (ПДКГМТА=0,5 мг/л).

Пример 2. В этом примере обусловлено применение ГМТА в сильно кислой среде по сравнению с прототипом. Процесс структурирования гидроксохлорида алюминия протекает в более кислой среде, тогда как в прототипе этот процесс не наблюдается. Это важное свойство позволяет проводить структурирование даже тогда, когда часть гидроксохлорида алюминия находится в виде низкомолекулярных соединений. Вводимый структурирующий агент способен связывать ионы водорода, давая при этом четырехзарядный катион (ГМТА), который и является действующим началом перевода гидоксохлорида алюминия из жидкого состояния в твердое.

В сильно кислой среде сульфаты и хлориды металлов, а также природный бишофит не переводят ГОХА в твердое состояние. Добавленный ГМТА связывает ионы водорода, рН повышается и ГОХА под действием образующегося многозарядного катиона [C6Hl2N4(H+)4]+4 переходит в твердое состояние (табл.2).

Как видно из табл. 2, время перехода в твердое состояние резко снижается при выбранном значении рН и динамической вязкости ГОХА в случае структурирования ГМТА. В этих условиях хлорид натрия не структурирует ГОХА.

Таблица 2

Влияние рН раствора ГОХА на время перехода в твердое состояние по сравнению с прототипом
№п/пДинамическая вязкость, Па·срНВремя перехода из жидкого состояния в твердое, мин
1100*3,5400
2140*3,5150
3180*3,512
4100**3,5Не переходит
5140**3,5Не переходит
6180**3,548 часов
* соотношение ГОХА:ГМТА=1:0,1

** соотношение ГОХА:NaCl=1:0,1 (по прототипу)

Исходя из приведенных примеров следует:

во-первых, способ получения твердых хлоралюминийсодержащих коагулянтов, заключающийся в смешении жидкого коллоидного раствора ГОХА с ГМТА, позволяет получить твердый ГОХА при меньшей концентрации структурирующего агента;

во-вторых, получение продукта возможно при меньшем значении рН;

в-третьих, полученный продукт обладает обеззараживающим действием из-за наличия ГМТА;

в-четвертых по сравнению с прототипом при очистке воды солесодержание в ней не увеличивается, поскольку ГМТА не диссоциирует на ионы.

Способ получения твердого хлоралюминийсодержащего коагулянта из жидкого коллоидного раствора путем превращения его в твердое состояние, отличающийся тем, что берут жидкий коллоидный раствор гидроксохлорида алюминия с динамической вязкостью 90-180 Па·с и подвергают его взаимодействию с гексаметилентетраамином в массовом соотношении 1:(0,01-0,10) соответственно.



 

Похожие патенты:
Изобретение относится к химической промышленности и цветной металлургии, может быть применено при получении сухого гидроксохлорида алюминия, который находит широкое применение в различных отраслях промышленности, в том числе для очистки питьевых и промышленных сточных вод.

Изобретение относится к способам получения основных хлоридов алюминия, которые могут быть использованы для очистки сточных и природных вод от взвесей и растворенных органических и неорганических веществ.

Изобретение относится к химической технологии неорганических веществ, в частности к способам получения гидроксохлорида алюминия, применяемого в системах водоподготовки, очистки сточных вод, медицинских препаратах и парфюмерно-косметических изделиях.
Изобретение относится к химической промышленности и цветной металлургии, связано с получением сухого гидроксохлорида алюминия. .

Изобретение относится к химической промышленности и может быть использовано при получении безводного хлорида алюминия . .

Изобретение относится к гидрометаллургии алюминия и может быть использовано при переработке высококремнистых железосодержащих бокситов на соединения алюминия и железа.

Изобретение относится к глиноземному производству. .
Изобретение относится к области цветной металлургии и может быть использовано в производстве глинозема по способу Байера. .

Изобретение относится к области металлургии, конкретно к переработке бокситов при температуре свыше 235°С. .
Изобретение относится к производству неорганического соединения лития и алюминия, которое может быть использовано для изготовления электролитических пластин топливных элементов с карбонатным электролитом и получения из этого порошка керамического материала, пригодного для использования в ядерной технологии.
Изобретение относится к цветной металлургии, конкретно к технологии комплексной переработки алунитового сырья. .

Изобретение относится к способам выращивания монокристаллов тугоплавких многокомпонентных соединений из расплава методом Чохральского. .

Изобретение относится к устройству и способу для получения расплавов солей и их смесей при помощи трубчатого реактора и реактора с непрерывным перемешиванием, в которых исходные материалы расплавляют и подвергают взаимодействию.
Изобретение относится к производству гранулированного фторида алюминия из порошкообразного фторида алюминия. .

Изобретение относится к производству глинозема и может быть использовано в сфере автоклавного выщелачивания боксита
Наверх