Способ определения параметров ориентации и навигации и бесплатформенная инерциальная навигационная система для быстровращающихся объектов

Изобретение относится к области приборостроения и может быть использовано в системах ориентации, определяющих параметры движения объекта, в частности перемещения, линейной скорости, угловой скорости относительно инерциальной, географической, стартовой или других систем координат. Сущность изобретения: в качестве измерителей угловой скорости используют акселерометры, оси чувствительности, по меньшей мере, двух из которых ориентированы в направлениях, не совпадающих с направлением оси быстрого вращения объекта и не ортогональных к этому направлению, а сами параметры ориентации и навигации быстровращающихся объектов получают с учетом обработки сигналов с указанных акселерометров с помощью решения системы дифференциальных уравнений с использованием параметров Родриго-Гамильтона или Кейли-Кейна. Измерители параметров движения объекта выполнены в виде установленных в корпусе объекта пяти акселерометров, датчика угловой скорости и термодатчика, причем оси чувствительности первой пары акселерометров ориентированы в одной плоскости с осью быстрого вращения объекта и отклонены от нее в разных направлениях на угол 45°, оси чувствительности второй пары акселерометров ориентированы в противоположные стороны в направлении, параллельном оси, проходящей через центры установочных отверстий в корпусе объекта, ось чувствительности пятого акселерометра ориентирована в направлении, параллельном оси, ортогональной оси быстрого вращения объекта, и оси, проходящей через центры установочных отверстий в корпусе, а ось чувствительности датчика угловой скорости ориентирована вдоль оси, проходящей через центры установочных отверстий в корпусе объекта, при этом информационные выходы пяти акселерометров, датчика угловой скорости и термодатчика подключены к информационным входам микропроцессора. Техническим результатом является расширение диапазона и повышение точности измерений, а также снижение габаритов и себестоимости устройства. 2 с. и 2 з.п. ф-лы, 4 ил.

 

Предлагаемые изобретения относятся к области приборостроения и могут быть использованы в системах ориентации, определяющих параметры движения объекта, в частности перемещения, линейной скорости, угловой скорости относительно инерциальной, географической, стартовой или других систем координат.

Системы ориентации служат для определения углового положения подвижного объекта относительно некоторой опорной системы координат. Известны два метода представления на борту подвижного объекта опорной системы координат: путем физического ее моделирования с помощью, например, гироплатформы или путем аналитического ее вычисления на основе измерений каких-либо отдельных параметров ориентации. В первом случае применяются гироскопические стабилизированные платформы, которым сообщаются три угловые степени свободы относительно корпуса объекта с помощью подвеса того или иного типа. В зависимости от типа подвижного объекта и его назначения платформа может стабилизироваться относительно инерциального пространства либо корректироваться относительно плоскости местного горизонта и в азимуте. Во втором случае реализуется бесплатформенная схема построения системы ориентации на основе датчиков, устанавливаемых непосредственно на корпусе объекта. Опорная система координат при этом создается при помощи вычислительной машины путем интегрирования и преобразования сигналов датчиков. Причем вычислительная машина моделирует в этом случае карданов подвес гироплатформы. Системы ориентации, построенные по такой схеме, называются бесплатформенными (см., например, патент РФ №2011169, МКИ G 01 С 21/00, 1990 г., патент РФ №2059205, МКИ G 01 С 21/00, 1992 г.).

При разработке быстровращающихся объектов (например, ракет, быстровращающихся снарядов, инклинометров) возникает проблема определения параметров движения объекта, требующая решения дополнительных задач. Обычно для решения таких задач применяются инерциальные навигационные системы, которые делятся на платформенные или бесплатформенные. Выбор инерциальной навигационной системы завит от динамики объекта и целого ряда эксплуатационных характеристик и точностных требований. Такие системы состоят, обычно, из трех гироскопов и трех акселерометров и содержат, при необходимости, одно-, двух- или трехстепенный карданов подвес.

Недостатком таких систем являются большие габариты, сложность прибора, слабая виброустойчивость и высокая цена.

Известен способ определения параметров ориентации и навигации подвижных объектов, включающий измерение линейных и угловых параметров, определение параметров ориентации объекта относительно опорной системы координат и определение координат объекта (патент РФ №2059205, МКИ G 01 С 21/00, 1992 г.).

Указанный способ позволяет исключить погрешность, связанную с вращением опорной системы координат.

Недостатком способа является то, что он не может обеспечить необходимую точность определения параметров быстровращающихся подвижных объектов.

Известно измерительное устройство для измерения параметров движения (Патент США №4,901,565, МКИ G 01 С 21/00, публ. 1990 г.).

Его недостаток состоит в том, что с его помощью нельзя решать навигационную задачу в условиях расширения эксплуатационных характеристик быстровращающихся подвижных объектов и ограничения возможностей измерителей параметров движения.

Техническим результатом данного изобретения является расширение диапазона и повышение точности измерений, а также снижение габаритов и себестоимости устройства, реализующего способ определения параметров ориентации и навигации быстровращающихся подвижных объектов.

Указанный технический результат достигается тем, что в известном способе определения параметров ориентации и навигации подвижных объектов, включающем измерение линейных и угловых параметров, определение параметров ориентации объекта относительно опорной системы координат и определение координат объекта, для обеспечения этого результата в качестве измерителей угловой скорости используют акселерометры, оси чувствительности, по меньшей мере, двух из которых ориентированы в направлениях, не совпадающих с направлением оси быстрого вращения объекта и не ортогональных к этому направлению, а сами параметры ориентации и навигации быстровращающихся объектов получают с учетом обработки сигналов с указанных акселерометров с помощью решения системы дифференциальных уравнений с использованием параметров Родриго-Гамильтона или Кейли-Кейна.

Кроме того, с первой пары акселерометров могут получать сигнал, пропорциональный линейному ускорению вдоль оси быстрого вращения объекта и угловой скорости вокруг нее, со второй пары акселерометров - сигнал, пропорциональный линейному ускорению вдоль оси, проходящей через центры установочных отверстий в корпусе объекта, и угловой скорости вокруг оси быстрого вращения объекта, с пятого акселерометра - сигнал, пропорциональный угловой скорости вокруг оси, проходящей через центры установочных отверстий в корпусе объекта, и линейному ускорению вдоль оси, ортогональной оси быстрого вращения объекта и оси, проходящей через центры установочных отверстий в корпусе объекта.

Кроме того, дополнительно могут использовать гироскоп, с которого могут получать сигнал, пропорциональный угловой скорости вокруг оси, проходящей через центры установочных отверстий в корпусе объекта, который обрабатывают совместно с сигналами, получаемыми с акселерометров.

В измерительном устройстве для измерения параметров движения указанный технический результат достигается тем, что в бесплатформенной инерциальной навигационной системе, содержащей измерители параметров объекта, подключенные к вычислителю навигационных параметров, эти измерители параметров объекта выполнены в виде установленных в корпусе объекта пяти акселерометров, датчика угловой скорости и термодатчика, причем оси чувствительности первой пары акселерометров ориентированы в одной плоскости с осью быстрого вращения объекта и отклонены от нее в разных направлениях на угол 45°, оси чувствительности второй пары акселерометров ориентированы в противоположные стороны в направлении, параллельном оси, проходящей через центры установочных отверстий в корпусе объекта, ось чувствительности пятого акселерометра ориентирована в направлении, параллельном оси, ортогональной оси быстрого вращения объекта, и оси, проходящей через центры установочных отверстий в корпусе, а ось чувствительности датчика угловой скорости ориентирована вдоль оси, проходящей через центры установочных отверстий в корпусе объекта, при этом информационные выходы пяти акселерометров, датчика угловой скорости и термодатчика подключены к информационным входам микропроцессора.

Кроме того, к свободному входу микропроцессора может быть подключен детектор уровня питания.

Предлагаемые изобретения иллюстрируются чертежами.

На фиг.1 представлена кинематическая схема навигационной системы;

На фиг.2 - система координат, связанная с объектом, и стартовая система координат;

На фиг.3 показано соответствие фаз угла крена (вращения) и осей сопровождающего невращающегося трехгранника X1Y1Z1;

На фиг.4 - блок-схема бесплатформенной инерциальной навигационной системы.

Для обеспечения осуществления способа применена следующая кинематическая схема.

Введем систему координат ОсвХсвYсвZсв, связанную с объектом:

- оси Yсв и Zсв лежат в плоскости, параллельной установочной плоскости прибора, проходящей через посадочные площадки выступов;

- ось Хсв перпендикулярна плоскости YсвZсв и направлена в сторону полета объекта;

- ось Yсв проходит через центры установочных отверстий,

где: А1...А5 - акселерометры, Г1 - гироскоп.

ХсвYсвZсв - система координат, связанная с объектом;

ХстYстZст - стартовая система координат.

Все акселерометры и гироскоп жестко связаны с корпусу прибора, который через свои установочные отверстия жестко привязан к корпусу объекта. При этом линия, проходящая через центры отверстий, определяет направления поперечных осей объекта (осей связанной системы координат объекта).

Оси чувствительности акселерометров А1 и А2 расположены в плоскости ХсвZсв и отклонены от продольной оси Хсв на угол 45° (А1 на -45°, А2 на +45°).

Данное расположение акселерометров выбрано таким образом для того, чтобы линейные ускорения, действующие вдоль оси Хсв при проецировании на оси чувствительности акселерометров входили в их диапазон измерений. Таким образом, сигнал, измеряемый акселерометрами А1 и А2, будет содержать информацию о линейных ускорениях, действующих по оси Хсв и угловой скорости вокруг оси Хсв, вследствие высокого значения величины этой скорости.

Оси чувствительности акселерометров A3 и А4 параллельны оси Yсв и направлены в противоположные стороны (A3 в положительном направлении оси Yсв, а А4 - в отрицательном). Сигнал с акселерометров A3 и А4 будет содержать информацию о линейном ускорении ракеты в направлении оси Yсв и угловой скорости вокруг оси Хсв.

Ось чувствительности акселерометра А5 параллельна оси zсв и направлена в положительном направлении оси zсв. Сигнал с акселерометра содержит информацию об угловой скорости вокруг оси Yсв, направленной в положительном направлении оси Yсв, и линейном ускорении, действующем по оси zсв.

Ось чувствительности гироскопа Г1 направлена в положительном направлении оси Yсв сигнал с гироскопа Г1 содержит информацию об угловой скорости ракеты вокруг оси Yсв.

Таким образом, мы получили кинематическую схему, с датчиков которой поступают сигналы, содержащие информацию:

- о линейном ускорении по оси Хсв;

- о линейном ускорении по оси Y;

- о линейном ускорении по оси zсв;

- об угловой скорости по оси Хсв;

- об угловой скорости по оси Yсв,

что позволяет использовать такую схему и для определения угловой скорости и в качестве датчика крена.

Устройство, реализующее предлагаемый способ, представляет собой измерительный блок бесплатформенной инерциальной навигационной системы (БИНС), предназначенной для решения задач навигации и ориентации для быстровращающихся относительно определенной оси объектов (ракет, управляемых снарядов).

В состав устройства 10 входят пять акселерометров 1-5, один датчик угловой скорости 6, жестко установленные на корпусе прибора, жестко связанного с корпусом объекта через свои установочные отверстия (в поперечных направлениях относительно продольной оси объекта и являющейся осью быстрого вращения), термодатчик 7, детектор уровня питания 8 и микропроцессор 9. Сигнал с элементов 1-8 поступает на микропроцессор 9. Кинематическая схема устройства представлена на фиг.1, а структурная - на фиг.4.

Обозначим углы на фиг.2 - ψ - курс; ϑ - тангаж; γ - крен (вращение), а также Ua1, UA2, Uа3, UA4, UA5 - сигналы с акселерометров А1, А2, A3, А4 и А5 соответственно.

Выходные сигналы с акселерометров A3 и А4 характеризуются системой уравнений:

где: Ка - масштабные коэффициенты акселерометров

λ - радиус точки положения измерительной массы акселерометра относительно оси вращения.

ωx,y,zcb - проекции угловой скорости движения объекта на оси объекта.

ax,y,zcb - проекции ускорения движения объекта на оси объекта.

При сложении уравнений получаем:

при вычитании:

где:

Выходные сигналы с акселерометров А1 и А2 характеризуются системой уравнений:

При сложении уравнений получим:

откуда:

При вычитании:

откуда определяем azcb:

Выходной сигнал с акселерометра А5 характеризуются уравнением:

Откуда определяется аZCB.

Угол γ определяется с помощью анализа модуляции ускорения свободного падения, g, присутствующей в сигнале каждого акселерометра.

Проекции угловой скорости ωYCB и ωZCB равны ее проекции на ось чувствительности гироскопа в фазах угла γ:

при γ=0°→ωYCB;

при γ=90°→ωZCB;

при γ=180°→-ωYCB;

при γ=270°→-ωzcB.

На диаграмме, представленной на фиг.3, показано соответствие фаз угла γ и осей трехгранника X1Y1Z1, проекции угловой скорости на которые измеряются датчиком угловой скорости (гироскопом).

Ось чувствительности Г совпадает с осью Y1 сопровождающего невращающегося трехгранника X1Y1Z1.

Далее на основе полученных данных решается задача ориентации и навигации с помощью уравнений Родриго-Гамильтона либо Кейли-Кейна (см., например, А.Ю.Ишлинский. Ориентация, гироскопы и инерциальная навигация. “Наука”. 1976 г. стр.599-600, стр.604, 611-619).

Таким образом, предлагаемые изобретения обеспечивают достижение технического результата, заключающегося в расширении диапазона и повышении точности измерений, а также снижение габаритов и себестоимости устройства, реализующего способ определения параметров ориентации и навигации быстровращающихся подвижных объектов.

1. Способ определения параметров ориентации и навигации быстровращающихся объектов, включающий измерение линейных и угловых параметров движения объекта, определение параметров ориентации объекта относительно опорной системы координат и определение координат объекта, отличающийся тем, что в качестве измерителей угловой скорости используют акселерометры, ось чувствительности каждого из которых ориентирована в направлении, не совпадающем с направлением оси быстрого вращения объекта, при этом с первой пары акселерометров получают сигнал, пропорциональный линейному ускорению вдоль оси быстрого вращения объекта и угловой скорости вокруг нее, со второй пары акселерометров получают сигнал, пропорциональный линейному ускорению вдоль оси, проходящей через центры установочных отверстий в корпусе объекта, и угловой скорости вокруг оси быстрого вращения объекта, с пятого акселерометра получают сигнал, пропорциональный угловой скорости вокруг оси, проходящей через центры установочных отверстий в корпусе объекта, и линейному ускорению вдоль оси, ортогональной оси быстрого вращения объекта, и оси, проходящей через центры установочных отверстий в корпусе объекта, а сами параметры ориентации и навигации быстровращающихся объектов получают после обработки сигналов о величинах угловых скоростей и линейных ускорений с указанных акселерометров с помощью уравнений Родриго-Гамильтона или Кейли-Кейна.

2. Способ по п.1, отличающийся тем, что дополнительно используют гироскоп, с которого получают сигнал, пропорциональный угловой скорости вокруг оси, проходящей через центры установочных отверстий в корпусе объекта, который обрабатывают совместно с сигналами, получаемыми с акселерометров.

3. Бесплатформенная инерциальная навигационная система для быстровращающихся объектов, содержащая измерители параметров объекта, подключенные к вычислителю навигационных параметров, отличающаяся тем, что измерители параметров объекта выполнены в виде установленных в корпусе объекта пяти акселерометров, датчика угловой скорости и термодатчика, причем оси чувствительности первой пары акселерометров ориентированы в одной плоскости с осью быстрого вращения объекта и отклонены от нее в разных направлениях на угол 45°, оси чувствительности второй пары акселерометров ориентированы в противоположные стороны в направлении, параллельном оси, проходящей через центры установочных отверстий в корпусе объекта, ось чувствительности пятого акселерометра ориентирована в направлении, параллельном оси, ортогональной оси быстрого вращения объекта, и оси, проходящей через центры установочных отверстий в корпусе, а ось чувствительности датчика угловой скорости ориентирована вдоль оси, проходящей через центры установочных отверстий в корпусе объекта, при этом информационные выходы пяти акселерометров, датчика угловой скорости и термодатчика подключены к информационным входам микропроцессора.

4. Система по п.3, отличающаяся тем, что к свободному входу микропроцессора подключен детектор уровня питания.



 

Похожие патенты:

Изобретение относится к системам ориентации и навигации подвижных объектов. .

Изобретение относится к приборам, измеряющим вертикальное перемещение судна на качке. .

Изобретение относится к способам наблюдения за состоянием трубопровода большой протяженности. .
Изобретение относится к области инерциальной навигации, в частности к способам определения текущих значений координат движущегося объекта. .

Изобретение относится к системам измерения и обработки информации и может быть использовано для определения линейного и углового отклонений упругого протяженного тела, одним концом закрепленного относительно заданной системы координат, в частности для измерения положения трубного става, погружаемого в воду с добывающего судна.

Изобретение относится к области навигации, а именно к области бесплатформенных инерциальных навигационных систем (БИНС), и может быть использовано при модернизации бортового оборудования (БО) беспилотных летательных аппаратов, имеющих в своем составе свободные гироскопы (ГС)

Изобретение относится к измерительной технике, а именно к навигации подвижных объектов: самолетов, ракет, кораблей, космических аппаратов

Изобретение относится к измерительной технике и может быть использовано для морских, воздушных и наземных объектов

Изобретение относится к области приборостроения и может быть использовано при выставке бесплатформенных инерциальных навигационных систем управления

Изобретение относится к способу и устройству для измерения ориентации носового шасси летательного аппарата, в частности транспортного летательного аппарата

Изобретение относится к области приборостроения и может найти применение в системах навигации подвижных объектов управления

Изобретение относится к измерительной технике и может быть использовано в системах управления подвижными объектами

Изобретение относится к области приборостроения инерциальных навигационных систем и может использоваться для определения текущих координат объекта и его угловой ориентации

Заявленное изобретение относится к области носителей, одновременно использующих информацию, получаемую от инерциального блока, и информацию, получаемую от системы спутниковой навигации, например системы GPS. Технический результат состоит в уменьшении, в случае возникновения неисправности у спутника, защитного радиуса вокруг вычисленного положения, ограничивающего ошибку определения истинного положения в соответствии с заданным уровнем риска для целостности, что определяет степень целостности системы. Для этого способ определения навигационных параметров носителя при помощи устройства гибридизации, содержащего фильтр (3) Калмана, формирующий гибридное навигационное решение на основе инерниальных измерений, рассчитанных виртуальной платформой (2), и необработанных измерений сигналов, переданных группой спутников и полученных от системы спутникового позиционирования (GNSS), отличающийся тем, что включает этапы, на которых определяют для каждого из спутников, по меньшей мере, одно отношение (Ir, Ir') правдоподобия между гипотезой наличия у данного спутника неисправности определенного типа и гипотезой отсутствия у спутника неисправности, констатируют наличие у спутника такой неисправности на основе отношения (Ir, Ir') правдоподобия, соответствующего неисправности определенного типа, и порогового значения, оценивают влияние констатированной неисправности на гибридное навигационное решение и корректируют гибридное навигационное решение в соответствии с оценкой влияния констатированной неисправности. 2 н. и 12 з.п. ф-лы, 1 ил.

Изобретение относится к навигации и может быть использовано, например, в качестве гирокомпаса и для определения направления севера. Способ определения курса осуществляется с помощью инерциального устройства (1), обеспечивающего измерения посредством, как минимум, одного вибрационного гироскопа (3), и включает в себя установку инерциального устройства таким образом, чтобы ось гироскопа находилась практически в горизонтальной плоскости, позиционирование инерциального устройства последовательно определенное число раз относительно вертикальной оси, количество положений при этом должно быть больше единицы, настройку электрического угла поворота вибрационного гироскопа в каждом положении на заданную величину (причем данная заданная величина должна быть одинаковой для всех позиций) и определение курса по результатам измерений и углу между вышеуказанными позициями. Изобретение позволяет использовать более простое инерциальное устройство и повысить точность измерений. 9 з.п. ф-лы, 2 ил.
Наверх