Приемник давлений

Использование: для измерения параметров пространственного течения жидких и газообразных сред или для определения параметров движения твердых тел, судов, самолетов относительно текучих сред. Сущность: приемник содержит тело вращения 1, торец 2, на котором расположено центральное приемное отверстие 8, периферийные приемные отверстия 4-7 расположены на линии сопряжения торца и поверхности, ограничивающей тело вращения. Приемник выполнен в виде диска, устанавливаемого поперек потока. 4 ил.

 

Изобретение относится к области измерительной техники и может быть использовано для измерения параметров пространственного течения жидких и газообразных сред или для определения параметров движения твердых тел, судов, самолетов и т.п. относительно текучих сред.

Известен цилиндрический приемник давлений, предназначенный для измерения величины и направления скорости двухмерных газовых потоков при числах Маха М<0,6 [1].

Приемник выполнен в виде цилиндрической трубки, на поверхности которой в плоскости поперечного сечения расположены приемные отверстия: центральное - для измерения полного давления и два периферийных для измерения давлений, используемых для определения углов скоса потока. При измерениях приемник располагается так, что продольная ось симметрии цилиндрической трубки перпендикулярна вектору скорости набегающего потока жидкости или газа (поперек потока). Приемник обладает наибольшей (из известных приемников) чувствительностью к величине скоростного напора (измерение скорости) и к углам скоса потока (измерение направления скорости), что связано с наибольшим перепадом давлений, возникающим между центральным и периферийными приемными отверстиями.

Недостатком приемника является то, что он может быть использован для измерений только в плоских потоках жидкости или газа.

Наиболее близким к изобретению по совокупности существенных признаков является шестиствольный насадок ЦАГИ, представляющий собой цилиндрическую трубку с головной частью полусферической формы [2] (прототип), предназначенный для измерения величины и направления скорости пространственных потоков газа. На головной части приемника расположены приемные отверстия, одно из которых - центральное служит для измерения полного давления, а периферийные, расположенные попарно во взаимно перпендикулярных плоскостях, предназначены для измерения давлений, используемых для определения углов скоса потока. При измерениях приемник располагается так, что при нулевых значениях углов атаки и скольжения продольная ось симметрии приемника параллельна вектору скорости набегающего потока жидкости или газа (вдоль потока).

Недостатком приемника, как и всех известных приемников давлений пространственного потока, является его низкая чувствительность к углам скоса и величине скоростного напора, проявляющаяся при измерениях в потоках малых дозвуковых скоростей (числа Маха М<0,3), увеличением погрешностей измерения давлений. Недостаточная чувствительность к измеряемым параметрам связана с небольшими перепадами давлений, возникающими на поверхности приемника при малых дозвуковых скоростях.

Изобретение направлено на повышение чувствительности к измеряемым параметрам и точности измерения давлений приемниками давлений, используемыми в дозвуковых потоках газа и в потоках несжимаемой жидкости.

Технический результат заключается в повышении чувствительности приемника давлений к углам скоса потока и величине скоростного напора, а также в повышении точности измерения давлений в потоке жидкости или газа за счет увеличения перепадов давлений, действующих на поверхности приемника.

Технический результат достигается тем, что в известном приемнике давлений, представляющем собой тело вращения, содержащем центральное приемное отверстие и периферийные приемные отверстия, используемые для определения направления и величины скорости потока жидкости или газа, центральное приемное отверстие расположено на торце тела вращения, периферийные приемные отверстия расположены на линии сопряжения торца с поверхностью, ограничивающей тело вращения, а сам приемник давлений выполнен в виде диска, устанавливаемого поперек потока.

На фиг.1 изображен общий вид приемника давлений.

На фиг.2 приведены графики распределения газодинамических параметров по поверхности шестиствольного насадка ЦАГИ (прототип).

На фиг.3 приведены графики распределения газодинамических параметров по поверхности заявляемого приемника давлений.

На фиг.4 приведены угловые характеристики прототипа и заявляемого устройства.

На фиг.1 изображен заявляемый приемник давлений, представляющий собой тело вращения, образующая которого представлена линией 1, ограниченное со стороны набегающего потока жидкости или газа торцом 2, на линии 3 сопряжения торца с поверхностью, ограничивающей тело вращения, попарно во взаимно перпендикулярных плоскостях размещены приемные отверстия 4-7, предназначенные для измерения углов скоса потока и величины скорости, на торце находится центральное отверстие 8 для измерения полного давления.

На фиг.2 приведен график 1 распределения безразмерной тангенциальной составляющей Vτ скорости жидкости или газа по поверхности приемника давлений (прототип), образующая которого представлена кривой 2, при его продольном обтекании. Приемник имеет форму шестиствольного насадка ЦАГИ с безразмерным значением радиуса образующей (L - длина приемника давлений). График 3 соответствует распределению коэффициента чувствительности

приемника к углу скоса α в зависимости от значения безразмерной продольной координаты График 4 показывает распределение коэффициента давления СP по поверхности приемника.

На фиг.3 приведен график 1 распределения безразмерной тангенциальной составляющей скорости Vτ жидкости или газа по поверхности заявляемого приемника давлений, образующая которого представлена линией 2, при его продольном обтекании. Приемник представляет собой тело вращения. График 3 соответствует распределению коэффициента чувствительности S приемника к углу скоса потока в зависимости от продольной координаты . График 4 соответствует распределению коэффициента давления СP по поверхности приемника.

На фиг.4 для числа Маха М=0,2 приведены угловые характеристики

шестиствольного насадка ЦАГИ - график 2 и заявляемого приемника давлений, изображенного на фиг.1, - график 1. Здесь Pi, Pj - давления в двух приемных отверстиях, расположенных на головной части приемников симметрично относительно продольной оси,

- скоростной напор в невозмущенном потоке;

- скорость невозмущенного потока.

Графики на фиг.2, 3 получены с помощью выполненного на ЭВМ численного расчета обтекания приемников давлений потоком несжимаемой жидкости [3]. В случае обтекания тел потоком газа полученные результаты могут быть использованы вплоть до чисел Маха М=0,4, когда сжимаемостью газа еще можно пренебречь.

Приемник давлений работает следующим образом.

Допустим, что обтекание приемника продольное и определяется величина скорости пространственного потока. Обычно для нахождения величины скорости используют следующую зависимость (см.[1] с.123), носящую название скоростной характеристики

где индексы у давлений Р соответствуют номерам приемных отверстий заявляемого устройства (фиг.1). Здесь вместо отверстия 7 могут быть использованы отверстия 4, 5 или 6.

Рассмотрим два приемника давлений: шестиствольный насадок ЦАГИ и заявляемый приемник. Тогда, как это следует из фиг.3, при обтекании заявляемого приемника потоком жидкости или газа в области, где находятся периферийные приемные отверстия, происходит дополнительный, по сравнению с прототипом (фиг.2), разгон потока, что иллюстрируется графиком 1 для величины безразмерной тангенциальной составляющей скорости жидкости Vτ, которая возрастает и достигает в точках расположения приемных отверстий 4÷7 своего максимального значения. Увеличение Vτ в соответствии с уравнением Бернулли сопровождается уменьшением давлений, действующих в приемных отверстиях (см. график 4 на фиг.3 и график 4 на фиг.2), что приводит к увеличению разности (перепада) давлений между центральным приемным отверстием 8 и периферийными 4-7. Этот эффект вызывает увеличение коэффициента чувствительности (для линейной скоростной характеристики) заявляемого приемника к величине скоростного напора. Нетрудно видеть, что при увеличении разности давлений между центральным и периферийными приемными отверстиями чувствительность приемника к величине скоростного напора будет возрастать.

Увеличение точности измерений с помощью заявляемого приемника происходит из-за уменьшения величины относительной погрешности измерения давлений. Относительную погрешность можно найти из выражения

,

где Р* - измеренное приближенное значение разности давлений, откуда непосредственно следует, что при использовании метрологически идентичных датчиков, имеющих одинаковую абсолютную погрешность измерений Δ(Р*), точность измерения давлений у заявляемого приемника будет выше, т.к. достигнутое значение перепада давлений Р*=P8-P7 для него больше, чем для прототипа.

Рассмотрим измерение направления потока газа с помощью заявляемого приемника давлений. Обычно для измерения направления пространственного потока используют четыре приемных отверстия, расположенных попарно во взаимно перпендикулярных плоскостях, формируя разности давлений отдельно между двумя приемными отверстиями, расположенными симметрично относительно продольной оси приемника. Для получения угловых характеристик, не зависящих от числа Маха, дополнительно используют давление, измеренное в центральном приемном отверстии. В общем случае угловая характеристика (без использования центрального приемного отверстия) может быть представлена в виде , а выражение для коэффициента угловой чувствительности

На фиг.4 представлены угловые характеристики прототипа - график 2 и заявляемого приемника - график 1, полученные для числа Маха М=0,2. При одном и том же значении угла скоса потока у заявляемого приемника величина разности давлений Рi-Pj больше, чем у прототипа, что по аналогии с измерением скорости приводит к более высокой чувствительности приемника к углам скоса потока (см. фиг.4, чувствительность к углу скоса - тангенс угла наклона касательной к угловой характеристике) и, вследствие этого, к более высокой точности измерения соответствующих давлений за счет уменьшения величины относительной погрешности. Как следует из сопоставления графиков функций чувствительности (см. фиг.2 и фиг.3), выполнение приемника давлений в соответствии с заявляемой формулой изобретения позволяет повысить его угловую чувствительность по сравнению с прототипом примерно в 5 раз.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Петунин А.Н. Методы и техника измерений параметров газового потока (приемники давлений и скоростного напора). М:. Машиностроение. 1972. С.88.

2. Бедржицкий Е.Л., Егоршев А.В., и др. Аэродинамические и прочностные испытания самолетов. М:. Машиностроение. 1992. С.159.

3. Маслов Л.А., Левшина З.Г. Программа расчета распределения давлений и турбулентного пограничного слоя на теле вращения под углом атаки. Отчет ЦАГИ №9270. 1976.

Приемник давлений, имеющий форму тела вращения, содержащий центральное приемное отверстие и периферийные приемные отверстия, используемые для определения направления и величины скорости потока жидкости или газа, отличающийся тем, что центральное приемное отверстие расположено на торце тела вращения, периферийные приемные отверстия расположены на линии сопряжения торца с поверхностью, ограничивающей тело вращения, а сам приемник давлений выполнен в виде диска, устанавливаемого поперек потока.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для измерения параметров пространственного течения жидких и газообразных сред или для определения параметров движения твердых тел, судов, самолетов относительно текучих сред.

Изобретение относится к измерительной технике и может быть использовано для измерения параметров пространственного течения жидких и газообразных сред или для определения параметров движения твердых тел, судов, самолетов относительно текучих сред.

Изобретение относится к измерительной технике и может быть использовано в информационно-измерительных системах летательных аппаратов при дозвуковых скоростях полета, в частности в информационно-измерительных системах вертолетов.

Изобретение относится к технической физике, измерительной технике и технике воздухоплавания, а именно к измерителям высотно-скоростных параметров (ВСП) полета, и может быть использовано в летных испытаниях летательной техники в части оценки погрешностей измерения ВСП.

Изобретение относится к области измерительной техники и может быть использовано для измерения параметров пространственного течения жидких и газообразных сред или для определения параметров движения твердых тел, судов, самолетов относительно текущих сред.

Изобретение относится к измерительной технике и может быть использовано для измерения параметров пространственного течения жидких и газообразных сред или для определения параметров движения твердых тел, судов, самолетов относительно текущих сред.

Изобретение относится к измерению давления и расхода текучих сред, например, в закрытых трубопроводах, имеющих большое поперечное сечение, при возможности легкого передвижения устройства вдоль трубопровода.

Изобретение относится к измерительной технике и может быть использовано для измерения параметров пространственного течения жидких и газообразных сред или для определения параметров движения твердых тел, судов, самолетов относительно текучих сред.

Изобретение относится к области измерительной техники, а именно к приборам, предназначенным для измерения порогового значения разности давлений. .

Изобретение относится к контрольно-измерительной технике и может быть использовано при изготовлении волоконно-оптических датчиков давления на основе оптического туннельного эффекта в различных отраслях народного хозяйства, например для измерения больших давлений в условиях изменения температуры окружающей среды в диапазоне ±100°С на изделиях ракетно-космической техники.

Изобретение относится к области измерительной техники, а именно к разделителям сред, преимущественное использование которых целесообразно в химической, энергетической, микробиологической, пищевой и медицинской промышленности для измерения давления агрессивных, токсичных, высоковязких, застывающих (полимеризующихся), загрязненных рабочих сред, содержащих пульсации давления или гидроудары, а также других, так называемых “проблемных сред”, в комплекте с измерительным прибором, например манометром.

Изобретение относится к области измерительной техники, а именно к разделителям сред, преимущественное использование которых целесообразно в химической, энергетической, микробиологической, пищевой и медицинской промышленности для измерения давления агрессивных, токсичных, высоковязких, застывающих (полимеризующихся), загрязненных рабочих сред, содержащих пульсации давления или гидроудары, а также других, так называемых “проблемных сред”, в комплекте с измерительным прибором, например манометром.

Изобретение относится к приборостроению, а точнее к устройствам для измерения давления преимущественно при контроле герметичности. .

Изобретение относится к приборостроению, а точнее к устройствам для измерения давления преимущественно при контроле герметичности. .

Изобретение относится к устройствам для автоматизации технологических процессов и может быть использовано на объектах газовой промышленности при добыче и транспорте газа.

Изобретение относится к измерительной технике, а именно к устройствам для измерения порогового значения давления, и предназначено для предотвращения перегрузки. .

Изобретение относится к измерительной технике, а именно к устройствам для измерения порогового значения давления, и предназначено для предотвращения перегрузки. .
Наверх