Способ ультразвукового контроля прочности бетона в эксплуатируемых конструкциях сооружений

Использование: для ультразвукового контроля прочности бетона в эксплуатируемых конструкциях сооружений. Сущность: заключается в том, что измеряют время распространения ультразвука не менее чем в десяти участках контролируемой зоны конструкции, вычисляют среднюю скорость ультразвука, определяют участки в контролируемой зоне, в которых измеренная скорость имеет максимальное, минимальное и наиболее близкое к средней скорости ультразвука значение, выбуривают и испытывают не менее двух кернов из каждого намеченного участка с последующим определением значений прочностей в этих участках, имеющих значения, соответствующие скорости ультразвука в этих участках, определяют влажности бетона в намеченных участках, определяют прочность бетона в конструкции в зависимости от его влажности по формуле. Технический результат: повышение точности и надежности определения прочности бетона с учетом его влажности в эксплуатируемых конструкциях сооружений. 2 ил., 1 табл.

 

Изобретение относится к области неразрушающего контроля строительных конструкций, преимущественно гидротехнических и гидромелиоративных сооружений, и может быть использовано для определения прочности бетона конструкций в процессе их строительства, реконструкции и эксплуатации.

Известен способ неразрушающего контроля прочности бетонов, включающий определение усилия вырыва анкерного устройства из бетона и определение по усилию вырыва прочности бетона (метод отрыва со скалыванием) (см., например, ГОСТ 22690-88. Бетоны. Определение прочности механическими методами неразрушающего контроля. - М.: Издательство стандартов, 1988, С.2...9).

Недостатком описанного способа являются ограничения по его использованию в густоармированных и тонкостенных конструкциях. Прочность бетона глубинных слоев определяется глубиной заделки анкерного устройства, что связано со значительной трудоемкостью проведения измерения.

Кроме описанного известен способ неразрущающего контроля прочности бетонов, основанный на корреляционной связи между поверхностной прочностью бетона конструкций и косвенными параметрами прочности (в числе которых значения отскока бойка от поверхности бетона, размеры отпечатка на бетоне, параметр ударного импульса и др.) (см. ГОСТ 22690-88. Бетоны. Определение прочности механическими методами неразрушающего контроля. - М.: Издательство стандартов, 1988, С.2...9).

Недостатком данного метода является низкая точность и то, что он позволяет определить прочность бетона только в поверхностных слоях. К тому же при изменении состава бетонов, условий их твердения в конструкции, сроков испытаний имеющаяся градуировочная зависимость требует уточнений. Это связано с дополнительными трудозатратами.

Известна разновидность способа ультразвукового контроля бетонных и железобетонных конструкций, включающая измерение скорости ультразвука в образцах, в виде кубиков, и материале конструкций, механические испытания образцов - кубов, построение градуировочной зависимости «скорость ультразвука - прочность бетона» по результатам измерений и испытаний образцов - кубов, а также определение прочности бетона конструкции по результатам ультразвуковых измерений и предварительно построенной градуировочной зависимости (см., например, ГОСТ 17624-87. Бетон. Ультразвуковой метод определения прочности. - М.: Издательство стандартов, 1987, С.1...20).

Недостатком упомянутого способа является значительная трудоемкость, обусловленная необходимостью проведения механических испытаний образцов - кубов бетона и построением градуировочной зависимости.

Наиболее близким приемом к заявляемому объекту является способ экспертного контроля прочности бетона в строящихся и эксплуатируемых конструкциях и сооружениях, включающий измерение времени распространения ультразвука не менее чем в 10 участках контролируемой зоны конструкции, вычисление средней скорости ультразвука (), определение участков в контролируемой зоне, в которых измеренная скорость имеет максимальное (Смакс), минимальное (Смин) и наиболее близкое к средней скорости ультразвука значение (Сn), выбуривание и испытание не менее двух кернов из каждого намеченного участка с последующим определением значений прочностей Rф.макс, Rф.мин, Rф.n в этих участках, имеющих скорости ультразвука Смакс, Смин, Сn, а также определение прочности бетона (R) в любом участке контролируемой зоны конструкции по выражению

где R - прочность бетона в j...ом участке контролируемой зоны конструкции, МПа;

Cj - скорость распространения ультразвука в j-ом участке контролируемой зоны конструкции, м/с (см. ГОСТ 17624-97. Бетоны. Ультразвуковой метод определения прочности. - М.: Издательство стандартов, 1987, С.23, прил.7).

Указанный способ в Российском стандарте не учитывает влияние влажности бетона в конструкциях сооружений на скорость распространения в нем ультразвуковых колебаний (УЗК). Нами экспериментально установлено, что с увеличением влажности бетона значительно возрастает в нем скорость распространения УЗК.

Гидротехнические и гидромелиоративные сооружения, представляющие собой бетонные и железобетонные конструкции, находятся постоянно в контакте с водой и имеют высокую степень водонасыщения. Даже в зимний период при опорожненных каналах гидротехнических систем она поддерживается на достаточно высоком уровне за счет атмосферных осадков (дождя и особенно снега) и грунтовых вод. При этом влажность бетона по высоте конструкций сооружений (подводная часть, зона переменного горизонта воды, надводная часть) распределяется неравномерно. Поэтому определение прочности бетона в условиях эксплуатации гидротехнических и гидромелиоративных сооружений по данному нормированному методу ультразвукового контроля, не учитывающего влажность бетона, осуществляется с большой погрешностью, величина которой составляет 25...60%.

Сущность заявленного изобретения.

Задача, на решение которой направлено заявленное изобретение, - создание метода ультразвукового контроля прочности бетона с учетом его влажности в эксплуатируемых конструкциях сооружений.

Технический результат - повышение точности и надежности определения прочности бетона с учетом его влажности в эксплуатируемых конструкциях сооружений.

Указанный технический результат достигается тем, что в известном способе ультразвукового контроля прочности бетона в эксплуатируемых конструкциях сооружений, включающем измерение времени распространения ультразвука не менее чем в десяти участках контролируемой зоны конструкции, вычисление средней скорости ультразвука (), определение участков в контролируемой зоне, в которых измеренная скорость имеет максимальное (Смакс), минимальное (Смин) и наиболее близкое к средней скорости ультразвука значение (Сn), выбуривание и испытание не менее двух кернов из каждого намеченного участка с последующим определением значений прочностей Rф.макс, Rф.мин, Rф.n в этих участках, скорости ультразвука Смакс, Смин, Сn, а также определение прочности бетона в любом участке контролируемой зоны, устанавливаемое расчетом, согласно изобретению определяют влажность бетона (Wj) в намеченных участках контролируемой зоны конструкции сооружения и устанавливают максимальную (W1) и минимальную (W2) влажность бетона контролируемой зоны конструкции, а также влажность бетона (W3), соответствующую скорости Cn, наиболее близкой к средней скорости ультразвука (), после чего прочность бетона определяют с учетом реальной влажности по формуле

где R - прочность бетона на участке контролируемой зоны конструкции, МПа;

RФ.макс - максимальная прочность бетона в контролируемой зоне конструкции, МПа;

RФ.мин - минимальная прочность бетона в контролируемой зоне конструкции, МПа;

RФ.п - прочность бетона на участке контролируемой зоны конструкции, где скорость ультразвука имеет величину (Сn), наиболее близкую к средней скорости ультразвука, м/с;

Смакс - максимальная скорость распространения ультразвука в бетоне контролируемой зоны конструкции, м/с;

Смин - минимальная скорость распространения ультразвука в бетоне контролируемой зоны конструкции, м/с;

Сn - значение скорости распространения ультразвуковых колебаний в бетоне контролируемой зоны конструкции, наиболее близкое к средней скорости ультразвука, м/с;

Cj - скорость распространения ультразвука в бетоне на j-ом участке контролируемой зоны конструкции, м/с;

Wj - влажность бетона на j-ом участке контролируемой зоны конструкции исследуемого сооружения, %;

W2 - минимальная влажность бетона контролируемой зоны конструкции, (надводная часть конструкции сооружения), %;

W3 - влажность бетона контролируемой зоны конструкции, соответствующая скорости Сn, наиболее близкой к средней скорости ультразвука () (зона переменного горизонта воды), %;

W1 - максимальная влажность бетона контролируемой зоны конструкции (подводная часть конструкции сооружения), %.

Изобретение поясняется иллюстрированным материалом. На фиг.1 представлены зависимости скорости распространения ультразвука в экспериментальных бетонных образцах от их влажности (зависимость 1 для бетона класса В 12,5 по прочности на сжатие; зависимость 2 - В 22,5; зависимость 3 - В 25; зависимость 4 - В 35...40).

На фиг.2 представлена зависимость интегрального показателя - относительного параметра скорости распространения ультразвука в бетонах класса В 12,5...В 40 по прочности на сжатие от их влажности.

Заявленный способ реализуют следующим образом.

Кривые на фиг.1 описываются уравнением степенной функции следующего вида

где Cj - скорость распространения УЗК в бетоне при W>0%, м/с;

С0 - скорость распространения УЗК в бетоне при W=0% (для бетонов класса В 12,5...В 40 по прочности на сжатие, С0 изменяется соответственно в пределах 4050...4600 м/с; 2,85 и 3,2 - эмпирические коэффициенты, полученные в результате математической обработки экспериментальных данных;

W - влажность бетона, % (по массе).

Коэффициент корреляции данной зависимости (5) составляет К=0,997.

График на фиг.2 описывается уравнением возрастающей степенной функции

где С0 - скорость распространения УЗК в бетоне при W=0%, м/с;

Cj - скорость распространения УЗК в бетоне при W>0%, м/с;

W - влажность бетона, % (по массе);

0,00065 и 3,2 - эмпирические коэффициенты, установленные в результате исследований.

Коэффициент корреляции полученной зависимости (6) составляет К=0,994.

Для определения прочности бетона (R) с учетом его влажности в эксплуатируемых конструкциях сооружений по результатам экспериментальных и теоретических исследований получена следующая регрессивная модель

где R - прочность бетона на участке контролируемой зоны конструкции, МПа;

RФ.макс - максимальная прочность бетона в контролируемой зоне конструкции, МПа;

RФ.мин - минимальная прочность бетона в контролируемой зоне конструкции, МПа;

RФ.n - прочность бетона на участке контролируемой зоны конструкции, где скорость ультразвука имеет величину (Сn), наиболее близкую к средней скорости ультразвука, м/с;

Смакс - максимальная скорость распространения ультразвука в бетоне контролируемой зоны конструкции, м/с;

Смин - минимальная скорость распространения ультразвука в бетоне контролируемой зоны конструкции, м/с;

Сn - значение скорости распространения УЗК в бетоне контролируемой зоны конструкции, наиболее близкое к средней скорости ультразвука, м/с;

Cj - скорость распространения ультразвука в бетоне на j-ом участке контролируемой зоны конструкции, м/с;

W1 - максимальная влажность бетона контролируемой зоны конструкции (подводная часть конструкции сооружения), %;

W2 - минимальная влажность бетона контролируемой зоны конструкции (надводная часть конструкции сооружения), %;

W3 - влажность бетона контролируемой зоны конструкции, оответствующая скорости Сn, наиболее близкой к средней скорости ультразвука () (зона переменного горизонта воды), %;

Wj - влажность бетона на j-ом участке контролируемой зоны конструкции исследуемого сооружения, %.

Коэффициент корреляции данной модели (7) составляет 0,99.

Сведения, подтверждающие возможность реализации заявленного способа, заключаются в следующем.

Предложенный способ ультразвукового контроля прочности бетона в эксплуатируемых конструкциях сооружений в производственных условиях осуществляют следующим образом.

Определение прочности бетона при экспертизе эксплуатируемых конструкций сооружений проводят в зонах конструкций, изготовленных из бетона на одном виде крупного заполнителя. Далее измеряют время распространения ультразвука не менее чем в 10 участках контролируемой зоны конструкции. Затем вычисляют среднюю скорость () распространения ультразвука в контролируемой зоне.

В контролируемой зоне намечают участки, в которых измеренная скорость ультразвука имеет максимальное (Смакс) и минимальное (Смин) значения, а также участок, где скорость ультразвука имеет величину (Сn), наиболее близкую к средней скорости ультразвука ().

Из каждого намеченного участка в соответствии с ГОСТ 10180-90 выбуривают и испытывают не менее двух кернов. По данным испытаний кернов определяют значения прочностей Rф.макс, Rф.мин, Rф.n в участках, имеющих скорости ультразвука Смакс, Смин, Сn, экспериментально определяют влажность бетона (Wj) в намеченных участках контролируемой зоны конструкции сооружения и устанавливают максимальную (W1) и минимальную (W2) влажность бетона контролируемой зоны конструкции, а также влажность бетона (W3), соответствующую скорости Сn, наиболее близкой к средней скорости ультразвука ().

Для получения числовых значений искомую прочность бетона (R) в любом участке контролируемой зоны конструкции сооружения определяют по формуле (7)

где R - прочность бетона на участке контролируемой зоны конструкции, МПа;

RФ.макс - максимальная прочность бетона в контролируемой зоне конструкции, МПа;

RФ.мин - минимальная прочность бетона в контролируемой зоне конструкции, МПа;

RФ.n - прочность бетона на участке контролируемой зоны конструкции, где скорость ультразвука имеет величину (Сn), наиболее близкую к средней скорости ультразвука, м/с;

Смакс - максимальная скорость распространения ультразвука в бетоне контролируемой зоны конструкции, м/с;

Смин - минимальная скорость распространения ультразвука в бетоне контролируемой зоны конструкции, м/с;

Сn - значение скорости распространения УЗК в бетоне контролируемой зоны конструкции, наиболее близкое к средней скорости ультразвука, м/с;

Cj - скорость распространения ультразвука в бетоне на j-ом участке контролируемой зоны конструкции, м/с;

W1 - максимальная влажность бетона контролируемой зоны конструкции (подводная часть конструкции сооружения), %;

W2 - минимальная влажность бетона контролируемой зоны конструкции (надводная часть конструкции сооружения), %;

W3 - влажность бетона контролируемой зоны конструкции, соответствующая скорости Сn, наиболее близкой к средней скорости ультразвука () (зона переменного горизонта воды), %;

Wj - влажность бетона на j-ом участке контролируемой зоны конструкции исследуемого сооружения, %.

Особенностями предложенного способа экспертного контроля прочности бетона являются новые методы определения скорости ультразвука и прочности бетона в зависимости от его влажности в исследуемых участках контролируемой зоны эксплуатируемых конструкций сооружений.

ПРИМЕР. Прочность бетона класса В 22,5 контролируют ультразвуковым прибором УК-14 ПМ в конструкции монолитной бетонной облицовки оросительного канала (после его опорожнения от воды) способом поверхностного прозвучивания. Параметры оросительного канала: наполнение (Н) - 3 м, ширина по дну (в) - 2 м, коэффициент заложения откосов (m) - 2. Толщина бетонной облицовки (δ) - 12 см.

Коэффициент перехода скорости ультразвука при поверхностном прозвучивании к скорости при сквозном прозвучивании составляет К=1,93. База прозвучивания (1) - 120 мм. В контролируемой зоне монолитной бетонной облицовки оросительного канала намечены участки, в которых измеренная скорость ультразвука имеет (Смакс=5093 м/с) минимальное (Смин=4536 м/с) значения, а также участок, где скорость ультразвука имеет величину (Сn=4741 м/с), наиболее близкую к средней скорости ультразвука

Из каждого намеченного участка в соответствии с ГОСТ 10180-90 выбурено и испытано по два керна. По данным испытаний кернов определены значения прочности Rф.макс=32,3 МПа, Rф.мин=29,5 МПа, RФ.n=30,2 МПа в участках, имеющих соответственно скорости Смакс=5093 м/с, Смин=4536 м/с, Сn=4741 м/с.

Основные данные для расчета прочности бетона в участках конструкции монолитной бетонной облицовки оросительного канала: Rф.мин=29,5 МПа; RФ.макс=32,3 МПа; Rф.n=30,2 МПа; Смин=453 м/с; Смакс=5093 м/с; Сn=4741 м/с; Сj=4536...5093 м/с; W1=5,3%; W2=2,2%; W3=4,0%; Wj=2,2...5,3%.

Результаты испытаний и расчетов прочности бетона по приведенной зависимости (4) в намеченных участках монолитной бетонной облицовки оросительного канала представлены в таблице.

Предложенный способ ультразвукового контроля прочности бетона в конструкциях сооружений, работающих во влажной среде, позволяет снизить погрешность измерений до 0,5...3,3%.

Номер участкаЗона расположени участкаВлажность бетона на участке, % (по массе)Скорость распространения ультразвука в бетоне, м\сПрочность бетона в участке конструкции, определенная
при поверхно стном прозвучиваниипри сквозном прозвучиваниимеханическим методом по ГОСТ 10180-90, МПаультразвуковым методом по изобретению, МПапогрешность, %
12345678
1Надводная зона2,22350453629,529,951,5
2-//-2,323534541-29,95-
3-//-2,423564547-29,94-
4-//-2,523604554-29,93-
5-//-2,623634561-29,92-
6-//-2,723674568-29,97-
7-//-2,823724577-29,91-
8Зона переменного уровня3,5024134657-29,84-
9-//-3,5524174664-29,84-
10-//-3,6024214672-29,84-
11-//-3,7024294688-29,84-
12-//-3,8024374704-29,90-
13-//-3,9024474722-29,88-
14-//-4,002456474130,231,203,3
15Подводная зона5,0025864992-31,44-
16-//-5,1026035024-31,40-
17-//-5,1026035024-31,40-
18-//-5,1526115040-31,60-
19-//-5,2026205057-31,80-
20-//-5,2526305075-31,97-
21-//-5,32639509332,332,11-0,5

Способ ультразвукового контроля прочности бетона в эксплуатируемых конструкциях сооружений, включающий измерение времени распространения ультразвука не менее чем в десяти участках контролируемой зоны конструкции, вычисление средней скорости ультразвука, определение участков в контролируемой зоне, в которых измеренная скорость имеет максимальное, минимальное и наиболее близкое к средней скорости ультразвука значение, выбуривание и испытание не менее двух кернов из каждого намеченного участка с последующим определением значений прочностей в этих участках, последующее определение прочности бетона в любом участке контролируемой зоны конструкции, устанавливаемое расчетом, отличающийся тем, что определяют влажность бетона в намеченных участках контролируемой зоны конструкции сооружений и устанавливают максимальную и минимальную влажность бетона контролируемой зоны конструкции, а также влажность бетона соответствующей скорости, наиболее близкой к средней скорости ультразвука, после чего прочность бетона определяют с учетом реальной влажности по формуле

где R - прочность бетона на участке контролируемой зоны конструкции, МПа;

Смин - минимальная скорость распространения ультразвука в бетоне контролируемой зоны конструкции, м/с;

Cn - значение скорости распространения ультразвуковых колебаний в бетоне контролируемой зоны конструкции, наиболее близкое к средней скорости ультразвука, м/с;

Rф.макс - максимальная прочность бетона в контролируемой зоне конструкции, МПа;

Rф.n - прочность бетона на участке контролируемой зоны конструкции, где скорость ультразвука имеет величину (Cn), наиболее близкую к средней скорости ультразвука, м/с;

Rф.мин - минимальная прочность бетона в контролируемой зоне конструкции, МПа;

Cj - скорость распространения ультразвука в бетоне на j-м участке контролируемой зоны конструкции, м/с;

Wj - влажность бетона на j-м участке контролируемой зоны конструкции исследуемого сооружения, %;

W2 - минимальная влажность бетона контролируемой зоны конструкции (надводная часть конструкции сооружения), %;

W3 - влажность бетона контролируемой зоны конструкции, соответствующая скорости Сn, наиболее близкой к средней скорости ультразвука {c) (зона переменного горизонта воды), %;

Смакс - максимальная скорость распространения ультразвука в бетоне контролируемой зоны конструкции, м/с;

W1 - максимальная влажность бетона контролируемой зоны конструкции (подводная часть конструкции сооружения), %.



 

Похожие патенты:

Изобретение относится к области ультразвуковых неразрушающих испытаний ферромагнитных материалов. .
Изобретение относится к области ультразвукового неразрушающего контроля листового, сортового проката и труб. .

Изобретение относится к области неразрушающего контроля. .

Изобретение относится к акустическим методам неразрушающего контроля и может быть использовано для определения качества сварных швов тепловыделяющих элементов. .

Изобретение относится к ультразвуковой дефектоскопии изделий. .
Изобретение относится к неразрушающему контролю, а именно к акустическим методам неразрушающего контроля, и может найти применение для определения состояния подземной части железобетонных опор контактной сети электрифицированных железных дорог.

Изобретение относится к области неразрушающего контроля. .

Изобретение относится к средствам неразрушающего ультразвукового контроля изделий, например, качества выполненных сварных соединений, обнаружения трещин, измерения толщины стенок и тому подобного.

Изобретение относится к акустическим методам неразрушающего контроля и может быть использовано для диагностики качества насосных штанг по параметрам их колебаний.

Изобретение относится к области неразрушающего контроля труб. .

Изобретение относится к области неразрушающих ультразвуковых методов контроля

Изобретение относится к электротехнике (линии энергоснабжения для железных дорог с электротягой на переменном токе, линии высоковольтных электропередач) и может найти применение для дистанционного обнаружения мест утечек в высоковольтных изоляторах, трещин в фарфоре, мест частичных разрядов, искрения и коронных разрядов, а также для определения утечек воздуха в магистралях и нарушения герметичности вакуумных систем, выявления дефектов маслонасосов систем охлаждения трансформаторов (подшипники, крыльчатки)

Изобретение относится к области неразрушающего контроля и может быть использовано для проверки работоспособности ультразвуковых дефектоскопов в процессе их настройки и поиска дефектов

Изобретение относится к области неразрушающего контроля изделий акустическими методами и может найти применение для контроля качества труб, например насосно-компрессорных труб (входной контроль, плановый контроль на промысле)

Изобретение относится к области неразрушающего контроля поверхностного слоя металлопроката и может быть использовано для обнаружения приповерхностных дефектов листового, сортового проката и труб из черных и цветных металлов

Изобретение относится к области электротехники и может быть использовано для контроля состояния высоковольтных фарфоровых опорно-стержневых изоляторов

Изобретение относится к неразрушающему контролю, а именно к акустическим методам неразрушающего контроля, и может найти применение для определения состояния подземной части железобетонных опор контактной сети электрифицированных железных дорог

Изобретение относится к области неразрушающего контроля строительных конструкций, преимущественно гидротехнических и гидромелиоративных сооружений, и может быть использовано для определения прочности бетонных конструкций в процессе их строительства, реконструкции и эксплуатации

Изобретение относится к области неразрушающего контроля строительных конструкций, преимущественно гидротехнических и гидромелиоративных сооружений, и может быть использовано для определения дефектов и повреждений бетонных конструкций в процессе их строительства, реконструкции и эксплуатации
Наверх