Электромеханический привод тормоза

Изобретение относится к транспортному машиностроению и может быть использовано в тормозных системах электрических транспортных средств. Электромеханический привод тормоза включает корпус, расположенный в нем эксцентриковый вал, сообщенный через редуктор с электродвигателем, пружину. Пружина размещена перпендикулярно оси эксцентрикового вала, а шатун связывает посредством пальца эксцентриковый вал с втулкой, во фланец которой упирается торец пружины. На эксцентриковом валу выполнены две эксцентриковые поверхности, расположенные относительно друг друга под определенным углом, причем с одной эксцентриковой поверхностью связана пружина, а с другой - шток. Эксцентриковые поверхности могут быть выполнены с различными эксцентриситетами, а угол разворота осей штока и втулки равен углу разворота эксцентриковых поверхностей. Техническим результатом является расширение эксплуатационных возможностей привода. 2 з.п. ф-лы, 4 ил.

 

Изобретение относится к транспортному машиностроению и может быть использовано в тормозных системах электрических транспортных средств (трамваев, метро).

Известен электромеханический привод GBM III немецкой фирмы РАКО, включающий электродвигатель, через планетарный редуктор связанный с эксцентриковым валом, силовую пружину, размещенную перпендикулярно оси эксцентрикового вала, шатун, проходящий внутри пружины и связывающий эксцентриковый вал посредством пальца с втулкой.

Недостатком устройства является то, что тормозное усилие при минимальном зазоре между тормозным диском и колодками, т.е. при максимально сжатой пружине, будет отлично от усилия при максимальном зазоре между тормозным диском и колодками, т. е. при максимально распущенной пружине, и разница в усилиях будет тем больше, чем больше ход штока, т.е. чем больше эксцентриситет.

Известен электромеханический привод тормоза (№2221717, В 60 Т 1/00), принятый за прототип, включающий корпус, расположенный в нем эксцентриковый вал, связанный через редуктор с электродвигателем. Расположенная в стакане пружина размещена перпендикулярно оси эксцентрикового вала. Шатун, проходящий внутри пружины, связывает посредством пальца эксцентриковый вал с втулкой, в которую упирается торец пружины. Причем пружина упирается одним торцом во фланец резьбовой втулки, а другим - в стакан, который установлен в корпусе с возможностью вращения, кроме того, внутри резьбовой втулки размещен коаксиально ей шток с резьбовым окончанием. При торможении на двигатель подается сигнал. Эксцентриковый вал поворачивается, при этом пружина разжимается, и шток выдвигается. Тормозные колодки прижимаются к тормозному диску. При растормаживании на двигатель подается сигнал, он включается и поворачивает эксцентриковый вал, который через шатун и палец перемещает втулку, сжимая пружину, и тем самым передвигает шток. При втягивании штока колодки разжимаются.

Недостатком привода является то, что при любом ходе штока усилие на колодках при минимальном и максимальном зазоре между колодками и тормозным диском не могут быть отличны от рабочих усилий пружины.

Технической задачей изобретения является расширение эксплуатационных возможностей привода посредством получения различных усилий на колодках, в том числе и одинаковых, при максимальном и минимальном зазоре между колодками и тормозным диском, а также посредством достижения аналогичных выходных усилий при одних и тех же перемещениях штока с использованием пружин с различными силовыми характеристиками.

Поставленная техническая задача достигается тем, что в электромеханическом приводе тормоза, включающим корпус, расположенный в нем эксцентриковый вал, сообщенный через редуктор с электродвигателем, пружину, размещенную перпендикулярно оси эксцентрикового вала, шатун, связывающий эксцентриковый вал с втулкой, во фланец которой упирается торец пружины, а также шток, согласно изобретению на эксцентриковом валу выполнены две эксцентриковые поверхности, расположенные относительно друг друга под углом, причем с одной эксцентриковой поверхностью связана втулка, а с другой - шток.

Поставленная техническая задача достигается также тем, что в предложенном электромеханическом приводе тормоза согласно изобретению эксцентриковые поверхности выполнены с различными эксцентриситетами.

Указанная задача может быть решена также тем, что угол разворота осей штока и втулки равен углу разворота эксцентриковых поверхностей.

Сравнение заявленного электромеханического привода тормоза с известными позволяет сделать вывод о достижении нового эффекта, выразившегося в том, что при выполнении на одном эксцентриковом валу двух эксцентриковых поверхностей, расположенных под углом, при связи одной поверхности со штоком, а другой с втулкой, появляется возможность выравнивания усилий на колодках. За счет определенного угла расположения эксцентриковых поверхностей создается такое отношение плеч входной силы от действия пружины и выходной силы на колодках, за счет которого на колодках во всем диапазоне их работы создаются усилия, близкие либо превосходящие усилия торможения при неизношенных колодках. При величине эксцентриситета поверхности, связанной с втулкой, больше величины эксцентриситета поверхности, связанной со штоком (плечо силы, создаваемой пружиной, больше плеча выходной силы), аналогичные усилия на колодках могут быть получены при использовании пружины с меньшими силовыми характеристиками, чем у пружины, используемой в приводах с одним эксцентриком.

Сущность изобретения поясняется чертежами, где:

- на фиг.1 изображена аксонометрическая проекция электромеханического привода с вырезом одной четверти;

- на фиг.2 изображена схема расчета выходного усилия;

- на фиг.3, фиг.4 изображены графики зависимости выходной силы на штоке от угла поворота эксцентрикового вала.

Электромеханический привод тормоза (фиг.1) содержит корпус 1, в котором размещен двигатель 2, связанный через редуктор 3 с эксцентриковым валом 4, установленным в корпус 1 с возможностью поворота на подшипниках 5. На эксцентриковом валу 4 выполнены две эксцентриковые поверхности А и В, расположенные друг относительно друга под определенным углом, при этом на одной из них А перпендикулярно оси эксцентрикового вала с возможностью поворота установлен шатун 6, связанный через палец 7 со штоком 8, который сбазирован в расточке С корпуса 1 с возможностью возвратно-поступательного движения. На другой эксцентриковой поверхности В перпендикулярно оси эксцентрикового вала установлен с возможностью поворота шатун 9, связанный через палец 10 с втулкой 11, которая с возможностью возвратно-поступательного движения установлена в расточке D корпуса 1. Оси расточек С и D, в которых установлены шток 8 и втулка 11, расположены под углом, равным углу разворота эксцентриковых поверхностей А и В. Во фланец втулки 11 упирается торец пружины 12. Другой торец пружины 12 упирается в корпус 1.

Электромеханический привод работает следующим образом. Сигнал торможения подается на двигатель 2, который через редуктор 3 позволяет повернуться эксцентриковому валу 4 на определенный угол ϕ, который изменяется в пределах α1≤ϕ≤π-α2 (фиг.2). Если угол ϕ принять за угол поворота эксцентриковой поверхности А, на которую установлен шатун 6, связанный через палец 7 с штоком 8, то плечо выходной силы F будет равно:

l1=e1·sin(ϕ),

где е1 - эксцентриситет эксцентриковой поверхности А.

Эксцентриковый вал 4 поворачивается благодаря моменту, создаваемому пружиной 12, которая, упираясь во фланец втулки 11, воздействует на шатун 9, установленный на эксцентриковой поверхности В, так как втулка 11 связана с шатуном 9 через палец 10. Таким образом, плечо силы Р пружины 12 равно:

l2=e2·cos(β-ϕ),

где е2 - эксцентриситет эксцентриковой поверхности В,

β - угол разворота эксцентриковых поверхностей.

При расчетах плеч l1 и l2 были приняты допущения, что шатуны 6 и 9 располагаются параллельно осям штока 8 и втулки 11 соответственно, а значит, и осям расточек С и D. Эти допущения справедливы, так как максимальные углы отклонения шатунов 6 и 9 от параллельности осям расточек С и D, соответственно равные и , где l3 - длина шатуна 6, l4 - длина шатуна 9, будут весьма незначительны при величинах l3 и l4, много больших соответствующих величин эксцентриситетов е1 и е2. Перемещение штока 8 вычисляется как

S11·(cos(α1)-cos(ϕ))

При этом ход пружины 12 будет равен

S2=e2·(sin(β-α1)-sin(β-ϕ)).

Так как моменты от сил пружины и торможения равны, то

F·l1=P·l2

F·е1·sin(ϕ)=Р·е2·cos(β-ϕ)

Само усилие, создаваемое пружиной, зависит от поворота эксцентрикового вала, поэтому

P=z1·(H0-(h+S2)),

где z1 - жесткость пружины,

Н0 - высота пружины в ненагруженном состоянии,

h - высота пружины при рабочей деформации.

Таким образом, выходное усилие равно

или при подстановке величины S2

При растормаживании подается сигнал на двигатель 2, который через редуктор 3, поворачивает эксцентриковый вал 4, при этом пружина 12 сжимается, а шток 8 движется в обратную сторону.

При расположении осей расточек С и D (т.е. осей штока и втулки) под углом, отличным от угла разворота эксцентриковых поверхностей А и В, возможно уменьшение углов отклонения шатунов от осей расточек, т.е. уменьшение погрешности расчетов. Так при угле разворота расточек С и D, равным можно снизить погрешность расчетов примерно в два раза.

Пусть задан ход штока привода S1=16 мм, среднее усилие на колодках F=10000 Н. Используем пружину с жесткостью z1=187.5 Н/мм с предварительным усилием P1=9000 Н, рабочим усилием Р2=12000 Н. Высота пружины в ненагруженном состоянии Н0=189.5 мм, высота пружины при рабочей деформации h=127 мм. Эксцентриситет поверхности, связанной со штоком, е1=9.24 мм, эксцентриситет поверхности, связанной с втулкой, е2=9.24 мм. Предельные значения угла ϕ поворота эксцентрикового вала , . Подбирая различные значения угла β разворота эксцентриковых поверхностей, строим график зависимости выходной силы F от угла поворота эксцентрикового вала ϕ. При угле разворота эксцентриковых поверхностей β=94.826° (фиг.3) усилия вначале и конце хода штока одинаковы и равны F=9970 Н. Максимальные и минимальные усилия на протяжении всего хода соответственно равны Fmax=10560 Н и Fmin=9760 Н. Разность между максимальным и минимальным усилием ΔF=Fmax-Fmin=10560-9760=800 Н. При угле разворота эксцентриковых поверхностей β=95.23° (фиг.4) разность между максимальным и минимальным усилием ΔF=Fmax-Fmin=10510-9818=692 Н, при этом усилие в начале хода меньше усилия в конце хода.

Использование предлагаемого устройства позволит на протяжении всего хода штока привода иметь приблизительно равные усилия торможения.

1. Электромеханический привод тормоза, включающий корпус, расположенный в нем эксцентриковый вал, сообщенный через редуктор с электродвигателем, пружину, размещенную перпендикулярно оси эксцентрикового вала, шатун, связывающий эксцентриковый вал с втулкой, во фланец которой упирается торец пружины, а также шток, отличающийся тем, что на эксцентриковом валу выполнены две эксцентриковые поверхности, расположенные относительно друг друга под углом, причем с одной эксцентриковой поверхностью связана втулка, а с другой - шток.

2. Электромеханический привод тормоза по п.1, отличающийся тем, что эксцентриковые поверхности выполнены с различными эксцентриситетами.

3. Электромеханический привод тормоза по п.1 или 2, отличающийся тем, что угол разворота осей штока и втулки равен углу разворота эксцентриковых поверхностей.



 

Похожие патенты:

Изобретение относится к транспортному машиностроению и может быть использовано в тормозных системах электрических транспортных средств. .

Изобретение относится к области дисковых тормозов, а именно к тормозам для тяжелых дорожных транспортных средств. .

Изобретение относится к транспортному машиностроению и может быть использовано в тормозных системах электрических транспортных средств. .

Изобретение относится к транспортному машиностроению и может быть использовано в автомобилестроении для повышения эффективности действия тормозных систем. .

Изобретение относится к области автомобилестроения, в частности к электромагнитным приводам органов управления транспортного средства. .

Изобретение относится к области железнодорожного транспорта, а именно к рельсовым электромагнитным тормозам

Изобретение относится к области автомобилестроения, в частности к тормозным устройствам

Изобретение относится к области машиностроения, в частности к тормозному оборудованию, и может быть использовано в тормозных системах транспортных средств

Изобретение относится к области транспорта, а именно к электромеханическим усилителям тормозных приводов. Электромеханический усилитель содержит толкатель поршня для передачи усилия приведения в действие тормозной системы от педали тормоза на поршень главного тормозного цилиндра и электромеханическое устройство для создания дополнительного усилия, повышающего усилие приведения в действие тормозной системы. Ведомое или выходное звено устройства для создания дополнительного усилия упруго соединено с толкателем поршня через упругий элемент, один концевой виток которого соединен с толкателем поршня, а другой концевой виток - с указанным ведомым или выходным звеном. 3 з.п. ф-лы, 1 ил.

Изобретение относится к автомобильному транспорту, в частности к способам управления работой автомобильной тормозной системы. Способ управления работой автомобильной тормозной системы (1) с гидравлическим приводом заключается в том, что в процессе регулирования тормозных сил, при котором регулируются тормозные силы, прикладываемые ко всем автомобильным колесам, уровень давления в гидравлической тормозной системе снижается. В процессе регулирования тормозных сил уменьшают постороннее усилие, создаваемое усилителем тормозного привода. Затем при работающем гидронасосе повышают постороннее усилие, создаваемое усилителем тормозного привода, в зависимости от разности давлений между напорной и всасывающей сторонами гидронасоса. Достигается снижение потребления электроэнергии электромеханическим усилителем тормозного привода и уменьшение тепловой нагрузки на него и токовой нагрузки на электрическую бортовую сеть автомобиля, а также снижение уровня давления во всей тормозной системе, что позволяет снизить нагрузку на остальные гидравлические компоненты, что приводит к увеличению их ресурса. 5 з.п. ф-лы, 1 ил.

Изобретение относится к области машиностроения, в частности к электромеханическим усилителям тормозного привода. Электромеханический усилитель тормозного привода, предназначенный для передачи мускульного усилия, прикладываемого водителем, и собственного дополнительного усилия в качестве приводного усилия на поршень главного тормозного цилиндра имеет электродвигатель и приводимый им в действие передаточный механизм. Передаточный механизм с передачей предназначен для преобразования вращательного движения в поступательное, а именно для преобразования приводного вращательного движения вала электродвигателя в поступательное движение выходного звена для приведения в действие главного тормозного цилиндра гидравлического тормозного привода. Передаточный механизм имеет распределительную передачу, распределяющую воздействие входного звена по двум кинематическим цепям, и объединительную передачу, объединяющую воздействия в кинематических цепях в воздействие на выходное звено. Достигается снижение нагрузки на кинематические цепи, а также возможность симметричного выполнения передачи и возможность симметричного воздействия на выходное звено усилителя тормозного привода для приведения этого выходного звена в поступательное движение. 7 з.п. ф-лы, 1 ил.

Изобретение относится к транспортному машиностроению и может быть использовано в тормозных системах электрических транспортных средств. Тормозной привод содержит корпус, в котором с возможностью вращения установлен винт, связанный посредством редуктора с двигателем 11. На винте установлена гайка с жестко закрепленными ползунами. Пакет пружин установлен между торцами гайки и корпуса. В корпусе размещены две тормозные колодки. Одна из тормозных колодок установлена в корпусе неподвижно, а другая, оппозитная первой, установлена в корпусе с возможностью перемещения и контактирует с ползунами. Корпус установлен подвижно на направляющие, оси которых параллельны направлению движения подвижной тормозной колодки. Двигатель является вентильным или шаговым. В корпусе могут быть установлены плунжеры в количестве, необходимом для создания усилия, превышающего максимальное усилие пакета пружин. Оси плунжеров параллельны оси гайки. Выходной конец вала двигателя может быть снабжен шейкой для установки гаечного ключа. Достигается возможность осуществления торможения без применения дополнительных колодочных систем при обеспечении ручного растормаживания в аварийном режиме. 2 з.п. ф-лы, 2 ил.

Группа изобретений относится к области машиностроения, а именно к тормозным системам рельсовых транспортных средств. Исполнительный механизм содержит средства для создания тормозного движения прижимной части с тормозным усилием, снабжающий интерфейс для соединения исполнительного механизма с блоком накопителя энергии, управляющий интерфейс для присоединения линии передачи данных и соединенный с управляющим интерфейсом блок логики. Блок логики выполнен с возможностью регулирования тормозного усилия в зависимости от передаваемого по линии передачи данных управляющего сигнала тормозного управляющего устройства. Исполнительный механизм как единое целое выполнен с возможностью монтажа на поворотной тележке рельсового транспортного средства. Исполнительный механизм выполнен с возможностью запуска аварийного торможения. Исполнительный механизм выполнен с возможностью установки тормозного усилия при аварийном торможении на максимальное значение, зависящее от информации загрузки из преобразовательного блока. Тормозная система для торможения рельсового транспортного средства содержит исполнительный механизм. Рельсовое транспортное средство выполнено из нескольких соединенных друг с другом в подвижной состав вагонов, каждый из которых имеет тормозную систему, содержащую исполнительный механизм. Достигается возможность надежного торможения рельсового транспортного средства. 3 н.п., 17 з.п. ф-лы, 6 ил.

Изобретение относится к области автомобилестроения, в частности к способам эксплуатации тормозного устройства. Способ эксплуатации тормозного устройства содержит рабочий тормоз и механический стояночный тормоз, выполненный с возможностью активации механическим исполнительным элементом, при котором выполняют этапы, на которых определяют, был ли перемещен исполнительный элемент из нейтрального положения в рабочее положение, одновременно управляют элементом повышения давления, увеличивают величину давления гидравлической жидкости, прикладывают максимальную величину давления гидравлической жидкости к общему тормозному элементу и блокируют общий тормозной элемент рабочего тормоза и стояночного тормоза с помощью механического стопора механического стояночного тормоза. Достигается улучшение эксплуатационных характеристик за счет усовершенствования способа эксплуатации тормозного устройства с механическим стояночным тормозом. 8 н.п. ф-лы, 1 ил.

Изобретение относится к электротехнике, а именно к способам, устройствам и системам контроля тормоза (402), содержащего первые (202, 204) и вторые (206,204) тормозные поверхности, намагничивающие средства (210), выполненные с возможностью формирования магнитного поля, способного перемещать тормозные поверхности (202, 204, 206) из сцепленного состояния в расцепленное состояние, при этом способы содержат определение электрического тока тормоза, когда тормозные поверхности (202, 204, 206) начинают перемещение из сцепленного состояния в расцепленное состояние; определение максимального электрического тока в намагничивающих средствах (201) тормоза (402) при расцепленном состоянии тормозных поверхностей и определение состояния тормоза (402) по токовому отношению, т.е. отношения тока, измеренного в начале перемещения тормозных поверхностей (202, 204, 206), к максимальному электрическому току. Технический результат состоит в проведении своевременного технического обслуживания грузоподъемных устройств, в повышении безопасности перемещения грузов и в сокращении времени простоев. 5 н. и 23 з.п. ф-лы, 16 ил.
Наверх