Способ получения полиимидных материалов

Изобретение относится к способу получения полиимидных материалов, которые могут быть использованы в авиации, автомобиле- и судостроении, строительстве, а также при производстве прочных негорючих полиимидных материалов в форме пленок, пенопластов, порошков. Способ включает нагрев раствора полиамидокислоты с проведением процесса имидизации в режиме ступенчатого подъема температуры и выдержку. Нагрев осуществляют воздействием СВЧ-излучения мощностью Pi, величину которой на каждой ступени устанавливают не менее расчетной, определяемой зависимостью где i - порядковый номер ступени, i=1...N; N - число ступеней; λр - теплота фазового перехода растворителя, Дж/кг; mi - масса растворителя, испаряемого на i-й ступени, кг; Ср - удельная теплоемкость основы, Дж/кг·°С; М - масса основы на начальной ступени имидизации, кг; ΔТiiо; Тi - температура выдержки на i-ой ступени, °С; То - температура основы перед началом процесса имидизации, °С; ti - время выдержки на i-й ступени, с. Дополнительно процесс имидизации завершают УФ-облучением с длиной волны λ=240-400 нм. Изобретение позволяет сократить продолжительность процесса имидизации и снизить себестоимость полиимидных материалов. 1 з.п. ф-лы, 4 табл.

 

Изобретение относится к химии высокомолекулярных соединений, в частности к технологии термической имидизации полиамидокислот, и может быть использовано в авиации, автомобиле- и судостроении, строительстве при производстве широкой номенклатуры легких прочных негорючих полиимидных материалов в форме пленок, пенопластов, порошков.

Известен способ получения полиимидной пленки, включающий приготовление основы из раствора полиамидокислоты с концентрацией 12-36% в виде пленки нанесением раствора на формующую поверхность и последующую ее имидизацию в режиме ступенчатого повышения температуры и выдержки. На первой ступени выдержку осуществляют при 80°С в течение 30 мин, на второй ступени - при 100°С в течение 15 мин и далее на последующих ступенях температуру повышают на 50°С и выдерживают на каждой ступени в течение 15 мин. На заключительной ступени осуществляют нагрев до 350°C (описание к a.c. SU 849748, С 08 G 73/10).

Процесс имидизации в известном способе ведут в течение 2 часов. Повышенный временной фактор в известном способе снижает производительность технологического процесса получения полиимидных материалов и повышает энергозатраты.

Задача изобретения - снижение себестоимости полиимидных материалов.

Технический результат - сокращение продолжительности процесса имидизации и расширение технологических возможностей.

Технический результат достигается тем, что в способе получения полиимидных материалов, включающем нагрев раствора полиамидокислоты с проведением процессов имидизации в режиме ступенчатого подъема температуры и выдержки, нагрев осуществляют воздействием СВЧ-излучения мощностью Pi, величину которой на каждой ступени устанавливают не менее расчетной

i - порядковый номер ступени, i=1......N;

N - число ступеней;

λр - теплота фазового перехода растворителя, Дж/кг;

mi - масса растворителя, испаряемого на i-й ступени, кг;

Ср - удельная теплоемкость основы, Дж/кг·°С;

М - масса основы на начальной ступени имидизации, кг;

ΔTi=Tiо;

Тi - температура выдержки на i-й ступени, °С;

То - температура основы перед началом процесса имидизации, °С;

ti - время выдержки на i-й ступени, с.

Для завершения процессов имидизации получаемый материал может быть дополнительно подвергнут УФ-облучению с длиной волны λ=240-400 нм.

В предлагаемом способе нагрев в условиях СВЧ-излучения сопровождается повышением температуры и давления внутри обрабатываемого материала ПАК основы. Создаются благоприятные условия для равномерного протекания процессов циклизации (имидизации) по всему объему материала ПАК основы и ускорению перемещения выделяющихся при этом остатков растворителя и воды. Скорость протекания процессов при нагреве в поле СВЧ-электромагнитного излучения возрастает в 25-50 раз. Это позволяет свести до минимума продолжительность технологического процесса, одновременно снижая трудоемкость, энергозатраты, и, следовательно, себестоимость материалов.

Проведенные исследования показали, что выбор мощности Рi СВЧ-излучения в соответствии с заданными режимами имидизации - нагрева и времени выдержки по зависимости (1), позволяет направленно воздействовать на химические реакции, структуру и свойства получаемых полиимидов.

Дополнительное УФ-облучение в качестве заключительной обработки при минимальных затратах обеспечивает более полную реализацию процесса циклообразования и позволяет улучшить термические и механические свойства получаемых полиимидных материалов, и, в частности, пленок. Исследования показали, что при УФ-облучении с длиной волны λ=240-400 нм наблюдается структурирование под действием света, приводящее к большей полноте имидизации и образованию сшитых структур. Облучение светом видимой части спектра (λ=350-600 нм) производит меньший эффект.

Примеры реализации способа при получении полиимидных материалов на модернизированной машине имидизации МИ-300 в динамическом режиме со скоростью перемещения ПАК основы V=3 м/мин (0,05 м/с).

Пример 1.

Для получения полиимидной (ПИ) пленки с поперечным сечением 24·10-6 кв.м и массой погонного метра МI=33,6·10-3 кг/м ПАК основу готовят формованием пленки ПАК из 15-20%-ного раствора поли-(n,n'-дифениленоксид)-пиромеллитамидокислоты в N,N'-диметилформамиде, с содержанием остаточного растворителя 28% (η=0,28).

Кроме того ПАК основа может быть приготовлена формованием пленки из растворов ПАК, синтезированных поликонденсацией диангидридов ароматических тетракарбоновых кислот (3,3', 4,4'-дифенилтетракарбоновой; 3,3',4,4'-бензофенонтетракарбоновой; 3,3', 4,4'-дифенилоксидтетракарбоновой) и ароматических диаминов (4,4'-диаминодифенилоксида; бензидина; 4,4'-диаминодифенилсульфона; м- и n-фенилендиаминов), как в N,N'-диметилформамиде, так и в N,N'-диметилацетамиде, N-метилпиралидоне и др. амидах.

Расчетные параметры М массы ПАК основы и суммарного времени выдержки t устанавливают из условия получения l погонного метра ПИ пленки с заданной производительностью V и принимают соответственно равными: М=MI/(1-η)=(33,6·10-3):(1-0,28)=46,3·10-3 кг и t=1/V=1: 0,05=20 с. Сформованную пленку ПАК при температуре То=80°С, установив число ступеней N=4, направляют для проведения процессов имидизации в режиме ступенчатого нагрева до температуры Тi (таблица 1) и выдержкой в течение ti=t/N=20:4=5 с. T1 для первой ступени нагрева выбирают близкой к значению температуры кипения растворителя, принимая равной 150°С. Массу растворителя mi, испаряемого на i-ой ступени, определяют исходя из условия равномерного выведения остаточного растворителя содержания растворителя в ПАК основе. Начиная со второй ступени mi принимают равной (М·η)/(N-1)=(46,3·10-3·0,28):3=4,4·10-3 кг.

Нагрев на каждой ступени проведения процесса имидизации осуществляют источником с действующей мощностью излучения, равной Pi=К·Pi min, где 1≤К<2, эмпирический коэффициент, зависящий от выбранной частоты ν СВЧ-излучения (ν=3·109-1012) Гц и от изменения диэлектрической проницаемости и тангенса угла диэлектрических потерь ПАК основы в процессе имидизации.

Значение Pi min на каждой i-ой ступени нагрева рассчитывают по зависимости (1), принимая значения теплоты фазового перехода растворителя λр=106 Дж/кг и удельной теплоемкости ПАК основы Ср=2·103 Дж/кг·°С. Далее в соответствии с установленными режимами, представленными в таблице 1, проводят процессы имидизации, осуществляя нагрев воздействием СВЧ-излучения мощностью Рi.

Таблица 1
i1234
mi, кг04,4·10-34,4·10-34,4·10-3
Ti, °C150200250300
ti, c5555
ΔTi, °С70505050
ν, Гц3·1093·1093·1093·109
К1,031,041,221,61
Pi min, Вт1307172616381552
Pi1350180020002500

Для завершения процессов имидизации и повышения степени имидизации, после заключительной ступени нагрева пленку подвергают УФ-излучению с длиной волны λ=240-400 нм {(1,25-0,75)1015 Гц}. Это позволяет улучшить прочностные свойства полученной ПИ пленки. В таблице представлены результаты сопоставительного анализа прочностных характеристик ПИ пленок

Таблица 2
Нагрев при проведении процессов имидизацииПрочность при разрыве, Н/м2Относительное удлинение при разрыве, %Температура 1%-ной деформации, °С
электроплитами (прототип)121,518,5290
воздействием СВЧ-излучения14075290
воздействием СВЧ-излучения + УФ-излучение15480,8290

Расхождения по массе полученной ПИ пленки и расчетными значениями не превышают 1-1,5%.

Пример 2.

При получении пенополиимидных материалов в виде непрерывного полотна с кажущейся плотностью 30-35 кг/м3 подготовку ПАК основы, расчетные параметры М, t, η, характеристики λр, Ср, принимают аналогично примеру 1.

Процесс имидизации ПАК основы проводят в режиме двух ступенчатого нагрева (N=2), исходя из создания на первой ступени условий одновременного вскипания и испарения одновременно во всем объеме слоя ПАК основы всего расчетного количества остаточного содержания растворителя массой m1=M·η=13,2·10-3 кг. Для этого температуру на первой ступени устанавливают выше температуры стеклования, выбирая равной T1=250°C, а время выдержки (не менее 75% от общего расчетного времени имидизации) t1=15 с. На второй ступени завершения процесса имидизации устанавливают Т2=300°С, t2=5c.

Далее в соответствии с установленными режимами рассчитывают по зависимости (1) мощность СВЧ-излучения (таблица 3) и проводят процессы имидизации с получением пенополиимидного материала.

Аналогично примеру 1 для завершения процессов имидизации, полученный пенополиимидное полотно подвергают УФ-облучению с длиной волны λ=240-400 нм.

Таблица 3
i12
mi, кг13,2·10-30
Ti, °C250300
ti, c155
ΔTi, °C17050
ν, Гц5·10105·1010
К1,222
Pi min, Вт1641672
Pi, Вт20001350

Пример 3. При получении мелкодисперсных ПИ порошков с насыпной плотностью 0,3 г/см3 ПАК основу готовят с содержанием растворителя 87% (η=0,87). Расчетные параметры М, t, η, характеристики λр, Ср, устанавливают аналогично примерам 1, 2. Направляют ПАК для проведения процессов имидизации при комнатной температуре То=20°С. Имидизацию проводят в режиме двух ступенчатого нагрева (N=2), исходя из создания на первой ступени условий для кипячения раствора ПАК и перехода системы из гомогенного состояния в гетерогенное с образованием суспензии нерастворимого в диметилформамиде мелкодисперсного порошка, а на второй ступени условий для испарения растворителя и выделения сухого ПИ порошка. Для этого температуру T1 и Т2 на первой и второй ступенях устанавливают равной температуре кипения растворителя 153°С, а расчетную массу растворителя соответственно на первой ступени, равной нулю (m1=0), и на второй ступени - m2=M·η=46,3·10-3·0,87=40,28·10-3 кг. Время выдержки на первой ступени устанавливают не более 25%, принимая для расчета t1=5 с, и соответственно на второй ступени - t2=15 c.

Далее в соответствии с установленными режимами рассчитывают по зависимости (1) мощность СВЧ-излучения (таблица 4) и проводят процессы имидизации с получением ПИ порошка.

Таблица 4
i12
mi, кг040,28·10-3
Тi, °С153153
ti, c515
ΔTi, °C1330
ν, Гц10121012
К1,0061,006
Pi min, Вт24842685
Pi, Вт25002700

Таким образом, заявленный способ позволяет осуществлять управление процессами формообразования путем выбора режимов имидизации. Расширяются технологические возможности процессов термической имидизации и появляется возможность создания унифицированного технологического процесса получения полиимидных материалов разнотипных по форме.

1. Способ получения полиимидных материалов, включающий нагрев раствора полиамидокислоты с проведением процесса имидизации в режиме ступенчатого подъема температуры и выдержку, отличающийся тем, что нагрев осуществляют воздействием СВЧ-излучения мощностью Pi, величину которой на каждой ступени устанавливают не менее расчетной, определяемой зависимостью

где i - порядковый номер ступени, i=l......N;

N - число ступеней;

λp - теплота фазового перехода растворителя, Дж/кг;

mi - масса растворителя, испаряемого на i-й ступени, кг;

Сp - удельная теплоемкость основы, Дж/(кг·°С);

М - масса основы на начальной ступени имидизации, кг;

ΔТiio;

Ti - температура выдержки на i-й ступени, °С;

То - температура основы перед началом процесса имидизации, °С;

ti - время выдержки на i-й ступени, с.

2. Способ по п.1, отличающийся тем, что завершают процессы имидизации УФ-облучением материала с длиной волны λ=240-400 нм.



 

Похожие патенты:

Изобретение относится к способу получения разветвленных сополиимидов на основе 4,5-бис-(3-аминофенокси)фталевой и аминофеноксифталевых кислот, которые могут быть использованы для создания новых полимерных материалов, сочетающих термостойкость с возможностью переработки и с наличием заданного количества функциональных групп, способных к полимераналогичным превращениям.

Изобретение относится к способу получения сверхразветвленных полиимидов на основе новой 4,5-бис-(3-аминофенокси)фталевой кислоты, которые могут быть использованы для создания новых полимерных материалов, сочетающих термостойкость с возможностью переработки и с наличием заданного количества функциональных групп, способных к полимераналогичным превращениям.

Изобретение относится к одностадийному способу получения сополиимидов на основе аминофеноксифталевых кислот, которые могут быть использованы при изготовлении материалов, обладающих высокой термостойкостью.

Изобретение относится к полиимидному сополимеру и металлическому ламинату, содержащему его, который применяют в качестве гибкой платы. .

Изобретение относится к одностадийному способу получения полиимидов на основе аминофеноксифталевых кислот, которые могут быть использованы при изготовлении материалов, обладающих высокой термостойкостью.

Изобретение относится к фторированным полимерам, содержащим последовательности перфторполиоксиалкилена и имеющим термопластичные эластомерные свойства, обладающим высокой эластичностью при низких температурах и высокими механическими свойствами при высоких температурах.

Изобретение относится к полиимидам или их полипептидным гидролизатам, легко поддающимся биологическому разложению по крайней мере на 80%, к способу их получения, а также к использованию полученных полиимидов или их полипептидных гидролизатов в детергентных композициях в качестве модифицирующей добавки.
Изобретение относится к химии и технологии высокотермостойких полимеров полиимидов, используемых для получения материалов, обладающих высокими физико-механическими и диэлектрическими свойствами.
Изобретение относится к способу получения алкенилсукцинимидов путем взаимодействия малеинового ангидрида с полиальфаолефином или полиизобутиленом, у которых содержание атомов углерода С 10-30, молекулярная масса 700-1100 в присутствии инициатора сначала при температуре 70-90°С в течение 0,5-1,0 ч, затем при 165-175°С в течение 3-4 часов при мольном соотношении полиальфаолефин (полиизобутилен): малеиновый ангидрид =1:1-1,1, с последующей конденсацией полученного алкенилянтарного ангидрида в масле с полипропиленполиаминами при 40-70°С в течение 0,5-1,5 ч, затем при 140-145°С в течение 4-4,5 ч

Изобретение относится к способу получения имидов алкенилянтарной кислоты путем алкилирования малеинового ангидрида полиальфаолефинами (с содержанием атомов углерода С10-30) молекулярной массой 750-1200 в присутствии инициатора сначала при 60-100°С в течение 1-1,5 часов, с последующим повышением температуры до 160-170°С в течение 3-4 часов и выдержкой при 175-180°С в течение 0,5 часов в мольном соотношении полиальфаолефин: малеиновый ангидрид =1:1-1,1, с последующей конденсацией алкилированного малеинового ангидрида смесью, содержащей полиэтиленполиамины при 50-110°С в течение 1-1,5 часов с последующим нагреванием при 135-145°С в течение 3,5-4 часов в мольном соотношении алкилированный малеиновый ангидрид: смесь (полиэтиленполиамин) =1:1-1,1 в среде масла или ароматических углеводородов

Изобретение относится к способу получения алкенилсукцинимидов путем алкилирования малеинового ангидрида полиальфаолефином или полиизобутиленом, у которых содержание атомов углерода С 10-30, молекулярная масса 800-1000 в присутствии инициатора сначала при температуре 60-100°С в течение 0,5-1 ч, затем при 165-175°С в течение 3,5-4,5 ч при мольном соотношении полиальфаолефин (полиизобутилен):малеиновый ангидрид = 1:1-1,1, с последующей конденсацией полученного алкенилянтарного ангидрида в присутствии масла с 5-метил-1,4,7,10-тетраминодеканом или 8-метил-1,4,7,10,13,16-гексаминогексадеканом сначала при 30-58°С в течение 0,5-1,0 ч, затем при 136-145°С в течение 3,5-4,0 ч в мольном соотношении алкенилянтарный ангидрид:амин = 1-1,5:1

Изобретение относится к усовершенствованному способу получения галогенфталевой кислоты, включающему смешивание от 3 до 7 весовых частей уксусной кислоты с 1 весовой частью галоген-орто-ксилола, с от 0,25 до 2 мол

Изобретение относится к полимерному лиганду с антраниламидными звеньями в основной цепи и к металл-полимерному комплексу, в котором полимерный лиганд образует люминесцирующие комплексы с ионами редкоземельных элементов

Изобретение относится к высокомолекулярным соединениям, конкретно к способу получения раствора полиамидокислоты на основе 4,4'-диаминотрифениламина, используемого для формирования беспористых покрытий на металлических и керамических подложках при производстве плат, применяющихся в электронной технике, а также для нанесения лаковых покрытий на провода, синтетические волокна и жгуты из них, для формирования пленок и волокон

Изобретение относится к области получения нового 4-(4-[N-этил-2-гидроксиэтиламино]-фенилазо)-фталонитрила для получения полимеров с нелинейными оптическими свойствами, обладающих высоким коэффициентом генерации второй гармоники и используемых в качестве модуляторов световых пучков, световолоконных переключателей, генераторов гармоник лазерного излучения для повышения емкости записи, фоторефрактивных сред для обратимой записи голограмм с дифракционной эффективностью, близкой к 100%, и т.п

Изобретение относится к синтезу полиимидов, а именно к способу применения цитраконового ангидрида и итаконового ангидрида

Изобретение относится к технологии получения полиимидных волокон, в частности к способу приготовления полиамидокислотных растворов для получения указанных волокон
Изобретение относится к области получения полиимидов, а именно к способу получения полиимидов в виде пресс-порошков
Наверх