Ниобий для изготовления конденсатора и конденсатор, изготовленный с использованием спеченного ниобиевого продукта

Изобретение относится к области электротехники, в частности к изготовлению конденсаторов в портативных устройствах. В изобретении описаны порошок ниобия для изготовления конденсаторов, в котором содержание хрома составляет 50 мас.ч. на млн. или менее, гранулированный продукт и полученный из них конденсатор, а также способ его получения; конденсатор, состоящий из одного электрода, выполненного из спеченного ниобиевого продукта, другого электрода и диэлектрического материала, расположенного между этими двумя электродами, и способ его получения; и электронная схема и электронное устройство, в котором используют конденсатор. При использовании спеченного ниобиевого продукта для изготовления конденсаторов, в котором содержание хрома составляет 50 мас.ч. на млн. или менее, согласно настоящему изобретению может быть получен конденсатор с высокими показателями устойчивости к воздействию напряжения, что является техническим результатом изобретения. 7 н. и 24 з.п. ф-лы, 2 табл.

 

Ссылки на родственные заявки

Настоящая заявка базируется на положении раздела 35 Кодекса законов США, часть 111 (а), испрашивается приоритет по дате подачи заявки, имеющей регистрационный номер 60/277280 и поданной в Патентное ведомство США 21 мая 2001 года, согласно положениям раздела 35 Кодекса законов США, часть 111 (b), в соответствии с разделом 35 Кодекса законов США, часть 119 (е) (1).

Область техники

Настоящее изобретение относится к ниобию (порошку ниобия, гранулированному ниобиевому продукту и полученному из него спеченному продукту), который может быть использован для изготовления конденсатора, обладающего высокими показателями устойчивости к воздействию напряжения и большой емкостью на единицу массы, изобретение также относится к конденсатору, изготовленному с использованием спеченного продукта.

Предшествующий уровень техники

Необходимо, чтобы конденсаторы, предназначенные для использования в электронных устройствах, таких как портативный телефон и персональный компьютер, обладали небольшим размером и значительной емкостью. Среди обычных конденсаторов предпочтительными являются танталовые конденсаторы, вследствие значительной емкости при небольшом размере и благодаря хорошим рабочим характеристикам. В таких конденсаторах на основе тантала, как правило, для анодной части используют спеченный продукт, полученный из порошка тантала. Для того, чтобы повысить емкость танталового конденсатора, необходимо повысить массу спеченного продукта или использовать спеченный продукт с увеличенной площадью поверхности, формирующейся в результате измельчения порошка тантала.

Первый указанный способ увеличения массы спеченного продукта обязательно приводит к увеличению размера конденсатора и конденсатор не может удовлетворять требованию снижения размеров. С другой стороны, при осуществлении второго способа - измельчении порошка тантала, предназначенного для увеличения удельной площади поверхности, диаметр пор в спеченном продукте на основе тантала снижается, либо на стадии спекания увеличивается количество закрытых пор, в результате чего импрегнирование катодным агентом на поздних стадиях становится затруднительным. В качестве одного из подходов к решению этих проблем проведено исследование конденсатора, в котором в качестве электрода применяют спеченный продукт, получаемый с использованием материала, обладающего большей диэлектрической проницаемостью, чем диэлектрическая проницаемость тантала. Материалы, обладающие большей диэлектрической проницаемостью, включают ниобий.

Ниобий гомологичен танталу, но значительно отличается от тантала по своим свойствам при использовании в качестве материала для конденсаторов. Например, если тантал содержит в качестве примеси кислород в количестве 10000 мас.ч. на млн., то характеристики тока утечки значительно ухудшаются, однако ниобий не доставляет таких проблем, и даже если содержание кислорода в ниобии составляет десятки тысяч мас.ч. на млн., характеристики тока утечки ухудшаются незначительно.

Однако конденсаторы, изготовленные с использованием ниобия в качестве исходного сырья, уступают по характеристикам устойчивости к воздействию напряжения конденсаторам, изготовленным с использованием в качестве исходного сырья тантала.

Известные публикации, описывающие взаимосвязь между количеством элементов-примесей, содержащихся в порошке ниобия, и рабочими характеристиками конденсатора, включают опубликованные международные заявки WO 00/49633 и WO 00/56486. В первой из них указывается, что рабочие характеристики конденсатора, такие как удельный ток утечки конденсатора, могут быть улучшены до 100 мас.ч. на млн. или менее посредством снижения количества элементов-примесей, таких как железо, никель и кобальт, а во второй публикации сообщается, что этот эффект может быть достигнут посредством регулирования содержания углерода от 40 до 200 мас.ч. на млн. и регулирования содержания железа, никеля и хрома приблизительно от 5 до 200 мас.ч. на млн.

Однако ни в одной из этих публикаций не раскрывают взаимосвязь между содержанием хрома и характеристиками конденсатора - показателями устойчивости к воздействию напряжения.

Сущность изобретения

В результате обширных исследований в области использования ниобия в качестве исходного сырья для изготовления конденсаторов, обладающих улучшенными показателями устойчивости к воздействию напряжения, авторы настоящего изобретения обнаружили, что существует, как правило, корреляция между показателями устойчивости к воздействию напряжения и содержанием примесей в ниобии (В, С, F, Na, Mg, Ca, Fe, Ni, Zn, W, Cr и другие примеси), в особенности, между устойчивостью к воздействию напряжения и содержанием хрома. Авторы настоящего изобретения также обнаружили, что конденсатор, в котором используется ниобий с пониженным содержанием хрома (в особенности 50 мас.ч. на млн. или менее), обладает значительно лучшими показателями устойчивости к воздействию напряжения. Как полагают, такое улучшение можно отнести к тому, что дефекты структуры, обусловленные элементами-примесями, частично присутствующими в диэлектрическом слое конденсатора, особенно заметны в случае элемента-хрома. Однако обычное доступное ниобиевое сырье характеризуется большим содержанием хрома, и следовательно, если сырье используется таким, каким оно поступает, описанных выше свойств достичь нельзя. Авторы настоящего изобретения разработали способ получения ниобия с пониженным содержанием хрома, такой ниобий используют в качестве исходного сырья для получения конденсаторов, обладающих небольшим объемом и хорошими показателями устойчивости к воздействию напряжения. Настоящее изобретение создано, основываясь на этих данных.

Настоящее изобретение относится к ниобию для изготовления конденсаторов, порошку ниобия, гранулированному продукту и полученному из него спеченному продукту, к конденсатору, изготовленному с использованием спеченного продукта, и к способу его получения, как указано ниже:

1. Ниобий для изготовления конденсаторов, в основном включающий ниобий, отличающийся тем, что содержание в нем хрома составляет 50 мас.ч. на млн. или менее;

2. Ниобий для изготовления конденсаторов, в основном включающий ниобий согласно пункту 1, приведенному выше, содержащий нитрид ниобия;

3. Ниобий для изготовления конденсаторов, в основном включающий ниобий согласно пункту 1, приведенному выше, содержащий карбид ниобия;

4. Ниобий для изготовления конденсаторов, в основном включающий ниобий согласно пункту 1, приведенному выше, содержащий борид ниобия;

5. Ниобий для изготовления конденсаторов, в основном включающий ниобий согласно пункту 1, приведенному выше, представляющий собой порошок, имеющий средний размер частиц от 0,1 мкм до 3 мкм;

6. Ниобий для изготовления конденсаторов, в основном включающий ниобий согласно пункту 1, приведенному выше, представляющий собой гранулированный продукт на основе ниобия, обладающий средним размером частиц от 10 мкм до 300 мкм;

7. Ниобий для изготовления конденсаторов, в основном включающий ниобий согласно пункту 1, приведенному выше, представляющий собой спеченный продукт на основе ниобия, имеющий удельную поверхность, определяемую по изотермам адсорбции методом Браунауэра-Эмета-Теллера (удельная БЭТ-поверхность), которая составляет от 0,5 до 7 м2/г;

8. Конденсатор, состоящий из одного электрода, выполненного из спеченного ниобиевого продукта, в основном включающего ниобий, второго электрода и диэлектрического материала, расположенного между ними; в указанном конденсаторе спеченный продукт представляет собой спеченный продукт, полученный из ниобия для изготовления конденсаторов согласно любому из пунктов 1-6, приведенному выше;

9. Конденсатор, состоящий из одного электрода, выполненного из спеченного ниобиевого продукта, в основном включающего ниобий, другого электрода и диэлектрического материала, расположенного между ними; в указанном конденсаторе спеченный продукт представляет собой спеченный продукт из ниобия для изготовления конденсаторов согласно пункту 7, приведенному выше;

10. Конденсатор согласно пункту 8 или 9, приведенному выше, в котором основной компонент диэлектрического материала, входящего в состав конденсатора, представляет собой оксид ниобия;

11. Конденсатор согласно любому из пунктов 8-10, приведенному выше, в котором другой электрод представляет собой по меньшей мере один материал, выбранный из группы, состоящей из раствора электролита, органического полупроводника и неорганического полупроводника;

12. Конденсатор по приведенному выше пункту 11, согласно которому органический полупроводник представляет собой по меньшей мере один органический полупроводник, выбранный из группы, состоящей из органического полупроводника, включающего тетрамер бензопирролина и хлоранил, органического полупроводника, в основном включающего тетратиотетрацен, органического полупроводника, в основном включающего тетрацианохинодиметан, и органического полупроводника, в основном включающего электропроводящий полимер, полученный посредством введения допанта в полимер, содержащий повторяющееся звено, представленное следующими формулами (1) или (2):

в которой радикал от R1 до R4 каждый представляет собой моновалентную группу, выбранную из группы, состоящей из атома водорода, линейной или разветвленной, насыщенной или ненасыщенной алкильной, алкокси или алкилзамещенной группы сложного эфира, содержащей от 1 до 10 атомов углерода, атома галогена, нитрогруппы, цианогруппы, первичной, вторичной или третичной аминогруппы, группы CF3, фенильной группы и замещенной фенильной группы; углеводородные цепи каждой из пар радикалов R1 и R2 и R3и R4 могут соединяться в произвольном положении с получением бивалентной цепи для образования по меньшей мере одной 3-, 4-, 5-, 6- или 7-членной насыщенной или ненасыщенной циклической углеводородной структуры вместе с атомами углерода, замещенными радикалами R1 и R2 или радикалами R3 и R4; объединенная циклическая цепь может содержать связь с карбонилом, простой эфирной группой, сложноэфирной группой, амидной группой, сульфидной группой, сульфинилом, сульфонилом или иминогруппой в произвольном положении; Х представляет собой атом кислорода, атом серы или атом азота; R5присутствует только в том случае, когда Х представляет собой атом азота, и каждый R5 независимо представляет собой атом водорода или линейную или разветвленную, насыщенную или ненасыщенную алкильную группу, содержащую от 1 до 10 атомов углерода.

13. Конденсатор по пункту 12, приведенному выше, согласно которому электропроводящий полимер представляет собой электропроводящий полимер, содержащий повторяющееся звено, представленное следующей формулой (3):

(в которой радикалы R6 и R7 каждый независимо представляет атом водорода, линейную или разветвленную, насыщенную или ненасыщенную алкильную группу, содержащую от 1 до 6 атомов углерода, или заместитель, позволяющий образовать по меньшей мере одну 5-, 6- или 7-членную насыщенную циклическую углеводородную структуру, содержащую два кислородных фрагмента, получаемую из алкильных групп, которые сочетаются друг с другом в произвольном положении; причем циклическая структура включает структуру, содержащую виниленовую связь, которая может быть замещенной, и фениленовую структуру, которая может быть замещенной);

14. Конденсатор по пункту 11, приведенному выше, согласно которому органический полупроводник представляет собой по меньшей мере одно соединение, выбранное из группы, состоящей из полипиррола, политиофена, полианилина и их замещенных производных;

15. Конденсатор по пункту 11, приведенному выше, согласно которому органический или неорганический полупроводник имеет электропроводность от 10-2 См·см-1 до 10 См·см-1;

16. Способ получения ниобия для изготовления конденсаторов, отличающийся тем, что он включает стадию снижения содержания хрома в веществе, в основном содержащем ниобий;

17. Способ получения ниобия для изготовления конденсаторов по пункту 16, приведенному выше, согласно которому стадия снижения содержания хрома представляет собой стадию обработки вещества, в основном содержащего ниобий, раствором, содержащим по меньшей мере одну кислоту, выбранную из группы, состоящей из фтороводородной кислоты, азотной кислоты, серной кислоты и хлороводородной кислоты;

18. Способ получения ниобия для изготовления конденсаторов по пункту 16 или 17, приведенному выше, согласно которому вещество, в основном содержащее ниобий, содержит нитрид ниобия;

19. Способ получения ниобия для изготовления конденсаторов по пункту 16 или 17, приведенному выше, согласно которому вещество, в основном содержащее ниобий, содержит карбид ниобия;

20. Способ получения ниобия для изготовления конденсаторов по пункту 16 или 17, приведенному выше, согласно которому вещество, в основном включающее ниобий, содержит борид ниобия;

21. Способ получения ниобия для изготовления конденсаторов по пункту 16, приведенному выше, согласно которому вещество, в основном включающее ниобий, представляет собой порошок;

22. Способ получения ниобия для изготовления конденсаторов по пункту 21, приведенному выше, согласно которому порошок ниобия имеет средний размер частиц от 0,1 мкм до 3 мкм;

23. Способ получения ниобия для изготовления конденсаторов по пункту 16, приведенному выше, согласно которому вещество, в основном включающее ниобий, представляет собой гранулированный ниобиевый продукт, обладающий средним размером частиц от 10 мкм до 300 мкм;

24. Способ получения ниобия для изготовления конденсаторов по пункту 16, приведенному выше, согласно которому вещество, в основном включающее ниобий, представляет собой спеченный ниобиевый продукт, характеризующийся удельной поверхностью, определяемой по изотермам адсорбции методом Браунауэра-Эмета-Теллера (удельная БЭТ-поверхность), которая составляет от 0,5 м2/г до 7 м2/г;

25. Способ получения гранулированного ниобиевого продукта для изготовления конденсаторов, который отличается гранулированием порошка ниобия для изготовления конденсаторов по пункту 5, приведенному выше;

26. Способ получения ниобиевого спеченного продукта для изготовления конденсаторов, который отличается спеканием гранулированного ниобиевого продукта для изготовления конденсаторов по пункту 6, приведенному выше;

27. Ниобий для изготовления конденсаторов, полученный способом по любому из пунктов 16-22, приведенных выше;

28. Гранулированный ниобиевый продукт для изготовления конденсаторов, полученный способом по пункту 25, приведенному выше;

29. Спеченный ниобиевый продукт для изготовления конденсаторов, полученный способом по пункту 26, приведенному выше;

30. Способ изготовления конденсатора, состоящего из одного электрода, в основном включающего ниобий, а также второго электрода и диэлектрического материала, расположенного между этими двумя электродами, отличающийся тем, что указанный способ изготовления конденсатора включает стадию снижения содержания хрома в электроде, в основном включающем ниобий;

31. Способ изготовления конденсатора, состоящего из одного электрода, сформированного из спеченного ниобиевого продукта, в основном включающего ниобий, а также из второго электрода и диэлектрического материала, расположенного между этими двумя электродами, который характеризуется тем, что указанный способ изготовления конденсатора включает стадию получения ниобия для изготовления конденсаторов, согласно по меньшей мере одному из приведенных выше пунктов 16-22.

32. Способ изготовления конденсатора, состоящего из одного электрода, сформированного из спеченного ниобиевого продукта, в основном включающего ниобий, а также из второго электрода и диэлектрического продукта, расположенного между этими двумя электродами, который характеризуется тем, что указанный способ изготовления конденсатора включает стадию получения гранулированного ниобиевого продукта для изготовления конденсаторов, согласно приведенному выше пункту 25;

33. Способ изготовления конденсатора, состоящего из одного электрода, сформированного из спеченного ниобиевого продукта, в основном включающего ниобий, а также из второго электрода и диэлектрического материала, расположенного между этими двумя электродами, который отличается тем, что указанный способ изготовления конденсатора включает стадию получения спеченного ниобиевого продукта для изготовления конденсаторов, согласно приведенному выше пункту 26;

34. Способ изготовления конденсатора по пункту 10, приведенному выше, согласно которому оксид ниобия получают электролитическим окислением;

35. Конденсатор, полученный способом по любому из приведенных выше пунктов 30-33;

36. Электронная схема, в которой используют конденсатор согласно любому из приведенных выше пунктов 8-15 и 35;

37. Электронное устройство, в котором используют конденсатор согласно любому из приведенных выше пунктов 8-15 и 35;

38. Ниобий для изготовления конденсаторов по приведенному выше пункту 1, в котором содержание хрома составляет 40 мас.ч. на млн. и менее;

39. Ниобий для изготовления конденсаторов по приведенному выше пункту 1, в котором содержание хрома составляет 5 мас.ч. на млн. или менее; и

40. Ниобий для изготовления конденсаторов по приведенному выше пункту 1, в котором содержание хрома составляет 3 мас.ч. на млн. или менее.

Сущность изобретения

Одно из воплощений изобретения, предназначенное для получения ниобия для изготовления конденсаторов в соответствии с настоящим изобретением, описанное ниже, основывается на одном из примеров выполнения.

Ниобий для изготовления конденсаторов, являющийся предметом настоящего изобретения, представляет собой вещество, которое в основном включает ниобий и может быть использовано в качестве материала для изготовления конденсатора. Данное воплощение включает порошок, гранулированный продукт и спеченный продукт.

Порошок ниобия, применяемый в качестве исходного сырья для приготовления ниобия, используемого для изготовления конденсаторов, может быть получен, например, посредством восстановления галогенида ниобия водородом, магнием или натрием, посредством восстановления фторида калия-ниобия натрием, электролизом фторида калия-ниобия с расплавленными солями (NaCl+KCl) на никелевом катоде, или введением водорода в слиток металлического ниобия с последующим измельчением полученного продукта в порошок. Порошок ниобия, получаемый этими способами, как полагают, содержит примеси используемых исходных веществ, восстанавливающего агента и материалов используемой аппаратуры.

При использовании таких способов в ниобии в качестве примеси возможно появляется хром. В соответствии с настоящим изобретением порошок ниобия, гранулированный ниобиевый продукт и спеченный ниобиевый продукт могут быть получены с пониженным содержанием хрома в порошке ниобия, в гранулированном ниобиевом продукте и в спеченном ниобиевом продукте до 50 мас.ч. на млн. или менее, предпочтительно до 40 мас.ч. на млн. или менее, более предпочтительно до 5 мас.ч. на млн. или менее и еще более предпочтительно до 3 мас.ч. на млн. или менее.

Для получения ниобия с небольшим содержанием хрома может быть применен способ, в соответствии с которым используют исходное сырье, характеризующееся достаточно низким содержанием хрома, и особую аппаратуру, используемую при получении ниобия, предназначенную для предотвращения появления даже небольшого количества примесей хрома, а также методику, включающую проведение стадии удаления примесей хрома при осуществлении способа получения ниобия. При выполнении условия, что содержание хрома может быть снижено до 50 мас.ч. на млн. или менее, в соответствии с настоящим изобретением может применяться любой способ без особенных ограничений.

Примеры этого включают способ использования исходного ниобиевого сырья или восстанавливающего агента, обладающих высокой чистотой, способ предотвращения загрязнения хромом при использовании аппаратуры, выполненной из материала, не содержащего хрома, а также способ промывки с использованием кислоты, включающей по меньшей мере одну из таких кислот, как фтороводородная кислота, азотная кислота, серная кислота и хлороводородная кислота, а также с использованием щелочи, или при использовании вышеуказанной кислоты, щелочи и пероксида водорода, последовательно или в сочетании.

Предпочтительным является последний из указанных методов с использованием кислоты и пероксида водорода. Этот метод может быть применен также в отношении ниобия, который должен отвечать требованиям, предъявляемым к ниобию, используемому для изготовления конденсаторов (а именно, в случае ниобия, содержащего нитрид ниобия, который описан ниже), а также в отношении ниобия определенной установленной формы (а именно, в случае порошка, гранулированного продукта или спеченного продукта). Поскольку этот метод может быть использован на относительно более поздних стадиях получения ниобия, предназначенного для изготовления конденсаторов, при выполнении множества предшествующих стадий нет необходимости использовать исходные вещества или аппаратуру, специально подобранные для того, чтобы предотвратить включение примесей хрома.

Порошок ниобия, являющийся предметом настоящего изобретения, предпочтительно имеет размер частиц 3 мкм или менее, для того чтобы повысить удельную площадь поверхности порошка, поскольку емкость конденсатора, получаемого с использованием ниобиевого порошка, находится в пропорциональной зависимости от удельной площади поверхности порошка. В этом отношении для повышения эффективности конденсатора эффективно увеличить площадь поверхности, то есть уменьшить средний размер частиц. Однако если размер частиц слишком мал, то импрегнирование катодным агентом на поздних стадиях становится затруднительным. Принимая во внимание необходимость соответствующего баланса между этими требованиями, средний размер частиц ниобиевого порошка предпочтительно составляет от 0,1 мкм до 3 мкм. Средний размер частиц гранулированного ниобиевого продукта составляет предпочтительно от 10 мкм до 300 мкм.

Гранулированный ниобиевый продукт, являющийся предметом настоящего изобретения, может быть получен, например, посредством гранулирования ниобиевого порошка до достижения подходящего размера частиц. Для проведения гранулирования могут быть использованы общепринятые методы. Примеры таких методов включают метод, в соответствии с которым частицы порошка выдерживают при высокой температуре от 500°С до 2000°С в вакууме и затем подвергают мокрому или сухому измельчению, а также метод, в соответствии с которым частицы порошка смешивают с подходящим связующим, например, таким, как акриловый полимер или поливиниловый спирт, и затем подвергают дроблению, и метод, в соответствии с которым частицы порошка смешивают с акриловым полимером или подходящим соединением, например, таким как камфора, фосфорная кислота или борная кислота, выдерживают при высокой температуре в вакууме и затем подвергают мокрому или сухому измельчению. Размер частиц гранулированного ниобиевого продукта может быть легко изменен при изменении степени гранулирования или измельчения, однако обычно используют гранулированный ниобиевый продукт со средним размером частиц от 10 мкм до 300 мкм. Гранулированный ниобиевый продукт после гранулирования и измельчения для удобства использования может быть отсортирован. Также после проведения гранулирования гранулированный ниобиевый продукт может быть смешан с подходящим количеством частиц порошка, не прошедшего гранулирование (в соответствии с настоящим изобретением гранулированный продукт, смешанный с не подвергнутыми гранулированию частицами порошка, также указывается как «гранулированный продукт»). Или гранулированные ниобиевые продукты, характеризующиеся различным средним размером частиц, для использования могут быть смешаны в подходящем соотношении. Удельная площадь поверхности полученного таким образом гранулированного ниобиевого продукта может легко варьироваться, и обычно используют гранулированный ниобиевый продукт, обладающий удельной площадью поверхности, составляющей от 0,5 м2/г до 7 м2/г.

В ниобиевом порошке, являющемся предметом настоящего изобретения, часть ниобия может быть связана с по меньшей мере одним из таких элементов, как азот, углерод и бор, для того, чтобы улучшить характеристики тока утечки. Порошок ниобия может включать любое из следующих соединений: нитрид ниобия, карбид ниобия и борид ниобия, которые представляют собой соединения с азотом, углеродом и бором соответственно, или может включать сочетание двух или трех из этих соединений. Суммарное содержание таких связанных элементов, то есть суммарное содержание азота, углерода и бора, варьируется в зависимости от формы ниобиевого порошка, и в случае порошка, имеющего средний размер частиц, составляющий приблизительно от 0,1 мкм до 3 мкм, суммарное содержание составляет от 50 до 200000 мас.ч. на млн., предпочтительно от 300 до 20000 мас.ч. на млн. В том случае, если суммарное содержание составляет менее чем 50 мас.ч. на млн., улучшение характеристик тока утечки недостаточно, в то время как если оно превышает 200000 мас.ч. на млн., ухудшаются характеристики емкости.

Азотирование для получения нитрида ниобия может быть осуществлено посредством любого из следующих способов: жидкофазного азотирования, ионного азотирования и газофазного азотирования или при комбинировании этих способов. Среди этих способов газофазное азотирование в атмосфере газообразного азота является предпочтительным, поскольку такая обработка довольно проста и легко осуществима. Газофазное азотирование в атмосфере газообразного азота может быть достигнуто посредством выдержки порошка ниобия в атмосфере газообразного азота. При проведении азотирования при температуре газообразной среды 2000°С или менее и времени выдержки, составляющем несколько часов или менее, может быть получен порошок ниобия с необходимой степенью азотирования. Если обработку осуществляют при более высокой температуре, азотирование может быть завершено за меньший промежуток времени. Таким образом, азотирование можно регулировать посредством контролирования температуры азотирования и времени проведения азотирования.

Карбонизация порошка монооксида ниобия может быть осуществлена посредством любого из следующих методов: газофазной карбонизации, твердофазной карбонизации и жидкофазной карбонизации или при комбинировании этих способов. Например, ниобиевый порошок может быть подвергнут карбонизации при выдержке его вместе с углеродным материалом или органическим веществом, содержащим углерод (например, таким как метан) при 2000°С или менее при пониженном давлении в течение от нескольких минут до десятков часов.

Борирование для получения борида ниобия может быть осуществлено либо посредством газофазного борирования, либо посредством твердофазного борирования. Например, борирование может быть осуществлено посредством выдержки ниобиевого порошка вместе с гранулами бора или с источником бора, таким как галогенид бора (например, трифторбор), при 2000°С или менее при пониженном давлении в течение от нескольких минут до десятков часов.

Спеченный ниобиевый продукт для изготовления конденсаторов, который является предметом настоящего изобретения, может быть получен, например, посредством спекания описанного выше порошка ниобия или гранулированного продукта. Один из примеров осуществления способа получения описан ниже, однако объем изобретения никоим образом не ограничивается этим примером.

Спеченный продукт может быть получен, например, посредством формования при прессовании порошка ниобия в предварительно заданной форме и последующего нагревания при температуре от 500°С до 2000°С в течение от нескольких минут до десятков часов при пониженном давлении от 10-4 до 102 Па или в атмосфере инертного газа, такого как аргон.

Также возможно подготовить свинцовую проволоку, включающую металл клапанного действия, такой как ниобий или тантал, и имеющую соответствующие объем и длину, и эту свинцовую проволоку как единое целое запрессовать посредством прессования под давлением порошка ниобия таким образом, чтобы часть свинцовой проволоки находилась внутри сформованного изделия, причем свинцовая проволока может выходить из основной части спеченного продукта. Удельная площадь поверхности полученного таким образом ниобиевого спеченного продукта, являющегося предметом настоящего изобретения, может легко варьироваться, и обычно используют спеченный ниобиевый продукт, имеющий удельную площадь поверхности, составляющую от 0,5 м2/г до 7 м2/г.

При использовании полученного таким образом спеченного продукта в качестве одного из электродов может быть изготовлен конденсатор посредством размещения диэлектрического материала между этим электродом и другим электродом. В число примеров диэлектрического материала для конденсатора входит диэлектрический материал, включающий оксид ниобия. Диэлектрический материал, включающий оксид ниобия, может быть получен, например, посредством химической обработки спеченного ниобиевого продукта как одного из электродов в растворе электролита. Для химического формирования ниобиевого электрода в растворе электролита, как правило, используют водный раствор протонной кислоты, такой как водный 0,1%-ный раствор фосфорной кислоты или водный раствор серной кислоты. В случае получения диэлектрического материала, включающего оксид ниобия, посредством химического формирования ниобиевого электрода в растворе электролита, конденсатор, являющийся предметом настоящего изобретения, по существу, представляет собой конденсатор с электролитом, и ниобиевая часть служит анодом.

С другой стороны, в конденсаторе, являющемся предметом настоящего изобретения, выбор другого электрода особенно не ограничен и, например, может быть использован по меньшей мере один материал, выбранный из растворов электролита, органических полупроводников и неорганических полупроводников, известных из предшествующего уровня техники для алюминиевых конденсаторов с электролитом.

Конкретные примеры раствора электролита включают раствор в смеси диметилформамид-этиленгликоль, в которой растворено 5 мас.% электролита - изобутилтрипропиламмоний тетрафторида бора, раствор в смеси пропиленкарбонат-этиленгликоль, содержащий 7 мас.% электролита - тетрафторидбората тетраэтиламмония.

В тех случаях, когда используемые органические или неорганические полупроводники имеют электропроводность от 10-2 См·см-1 до 103 См·см-1, изготовленный конденсатор имеет меньший импеданс, и это предпочтительно. Конкретные примеры органического полупроводника, использование которого обеспечивает такие характеристики, включают органический полупроводник, включающий тетрамер бензопирролина и хлоранил, органический полупроводник, в основном включающий тетратиотетрацен, органический полупроводник, в основном включающий тетрацианохинодиметан, и органический полупроводник, полученный посредством ведения допанта в полимер, содержащий повторяющееся звено, представленное следующими формулами (1) или (2):

в которой каждый из радикалов от R1 до R4 представляет собой моновалентную группу, выбранную из группы, состоящей из атома водорода, линейной или разветвленной, насыщенной или ненасыщенной алкильной, алкокси или алкильной группы сложного эфира, содержащей от 1 до 10 атомов углерода, атома галогена, нитрогруппы, цианогруппы, первичной, вторичной или третичной аминогруппы, группы CF3, фенильной группы и замещенной фенильной группы; углеводородные цепи в каждой из пар радикалов R1 и R2 и R3 и R4 могут соединяться в произвольном положении с получением при этом бивалентной цепи для образования по меньшей мере одной 3-, 4-, 5-, 6- или 7-членной насыщенной или ненасыщенной циклической углеводородной структуры вместе с атомами углерода, замещенными радикалами R1 и R2 или радикалами R3 и R4; объединенная циклическая цепь может содержать связь с карбонилом, простой эфирной группой, сложноэфирной группой, амидной группой, сульфидной группой, сульфинилом, сульфонилом или иминогруппой в произвольном положении; Х представляет собой атом кислорода, атом серы или атом азота; R5 присутствует только в том случае, когда Х представляет собой атом азота, и каждый R5 независимо представляет собой атом водорода или линейную или разветвленную, насыщенную или ненасыщенную алкильную группу, содержащую от 1 до 10 атомов углерода.

В соответствии с настоящим изобретением в формуле (1) или (2) радикалы от R1 до R4 каждый независимо предпочтительно представляют атом водорода или линейную или разветвленную, насыщенную или ненасыщенную алкильную или алкоксигруппу, содержащую от 1 до 6 атомов углерода, и каждая из пар радикалов R1 и R2, R3 и R4 может объединяться друг с другом с образованием кольца.

В соответствии с настоящим изобретением электропроводящий полимер, включающий повторяющееся звено, представленное формулой (1), предпочтительно представляет собой электропроводящий полимер, повторяющееся звено которого представлено следующей формулой (3):

в которой радикал R6 и R7 каждый независимо представляет атом водорода, линейную или разветвленную, насыщенную или ненасыщенную алкильную группу, содержащую от 1 до 6 атомов углерода, или заместитель, позволяющий образовать по меньшей мере одну 5-, 6- или 7-членную насыщенную циклическую углеводородную структуру, содержащую два кислородных фрагмента, получаемую из алкильных групп, которые объединяются друг с другом в произвольном положении; циклическая структура включает структуру, содержащую виниленовую связь, которая может быть замещенной, и фениленовую структуру, которая может быть замещенной.

Молекула электропроводящего полимера, имеющего такую химическую структуру, содержит полярон или биполярон, и вследствие этого такой полимер обладает электропроводностью. В этот полимер вводят допант, в качестве допанта могут быть использованы известные допанты, без ограничений.

Конкретные примеры неорганического полупроводника представляют, в основном, неорганический полупроводник, в основном включающий диоксид свинца или диоксид марганца, и неорганический полупроводник, включающий тетраоксид трехвалентного железа. Указанные полупроводники могут быть использованы по отдельности или в сочетании двух из них или более.

В том случае, если второй электрод является твердым, на нем может быть сформирован электропроводящий слой таким образом, чтобы достичь хорошего электрического контакта с наружным свинцовым проводом (например, свинцовым каркасом), который используется, если это является необходимым.

Электропроводящий слой может быть сформирован, например, посредством отверждения электропроводящей пасты, плакирования, металлизации или формирования пленки теплостойкого электропроводящего полимера. Предпочтительные примеры электропроводящей пасты включают серебряную пасту, медную пасту, алюминиевую пасту, углеродную пасту и никелевую пасту, указанные пасты могут быть использованы по отдельности или при сочетании двух или более паст. В случае использования двух или более видов паст указанные пасты могут быть смешаны или нанесены поочередно одна на другую в виде отдельных слоев. Нанесенную электропроводящую пасту затем отверждают посредством ее выдержки на воздухе или посредством нагревания. Примеры плакирования включают плакирование никелем, плакирование медью, плакирование серебром и плакирование алюминием. Примеры металлов, из которых получают пленку, осаждаемую из паровой фазы, включают алюминий, никель, медь и серебро.

Более конкретно, например, углеродную пасту и серебряную пасту наносят в указанном порядке на второй электрод и запрессовывают с таким материалом, как, например, эпоксидная смола, получая при этом конденсатор. В этом конденсаторе может иметься свинец с добавкой ниобия или тантала, который спекается и формуется как целое со спеченным ниобиевым материалом или приваривается позже.

В том случае, когда второй электрод является жидким, изготовленный конденсатор, включающий два описанных выше электрода и диэлектрический материал, вставляют, например, в корпус, электрически связанный со вторым электродом, для того чтобы получить конденсатор. В этом случае электродная сторона спеченного ниобиевого продукта имеет вывод наружу посредством свинца с добавками ниобия или тантала, описанного выше, и в это же время электродную сторону изолируют от корпуса посредством изоляционной смолы или подобного вещества.

Изготовленный таким образом конденсатор, являющийся предметом настоящего изобретения, используют в закрытом кожухом виде, для этого применяют, например, расплав полимера, поверхностную полимерную оболочку, металлический кожух, полученную погружением пленку полимера или ламинирующую пленку, и затем используют в качестве готового изделия - конденсатора, применяемого для различных целей.

В тех случаях, когда используют конденсатор, являющийся предметом настоящего изобретения, может быть получено изделие, более компактное по сравнению с используемыми общеизвестными конденсаторами, с теми же характеристиками устойчивости к воздействию напряжения и такой же емкостью.

В электронных схемах портативных телефонов или персональных компьютеров и в подобных устройствах используют множество конденсаторов, и в том случае, когда используют конденсатор, являющийся предметом настоящего изобретения, электронная схема может занимать меньший объем, чем при использовании обычных конденсаторов. Кроме того, в том случае, когда используют конденсатор, являющийся предметом настоящего изобретения, могут быть изготовлены электронные устройства, которые более компактны, чем обычные электронные устройства.

Наиболее предпочтительный способ осуществления изобретения

Ниже настоящее изобретение описано более подробно с приведением примеров и сравнительных примеров, однако объем настоящего изобретения указанными примерами не ограничивается.

В каждом из примеров и сравнительных примеров содержание азота в порошке ниобия определяют с использованием азот/кислородного анализатора, изготовленного фирмой LECO, а содержание хрома определяют масс-спектрометрически методом IPC-MS.

Показатель устойчивости изготовленных конденсаторов к воздействию напряжения в каждом примере испытаний определяют как такую величину напряжения, при приложении которого к 30 конденсаторам при последовательном повышении напряжения на 1 В количество замкнутых накоротко конденсаторов превышало 5 единиц.

Примеры 1-7 и сравнительный пример

Порошок ниобия (средний размер частиц 3 мкм), полученный посредством введения газообразного водорода в слиток ниобия и мокрого размола слитка, измельчают в порошок в струйной мельнице в атмосфере азота без проведения дегидрогенирования. Измельченный ниобиевый порошок не вынимают, а выдерживают при 400°С при пониженном давлении для осуществления дегидрогенирования, после этого выдерживают при 850°С и затем дробят для того, чтобы получить порошок ниобия. После этого пропускают газообразный азот при 300°С в течение 20 минут с получением при этом 100 г частично (приблизительно 1600 мас.ч. на млн.) азотированного порошка ниобия.

10 г полученного на этой стадии порошка ниобия используют в сравнительном примере, а остальные 90 г погружают в раствор, представляющий собой смесь в соотношении 3:2 азотной кислоты и водного пероксида водорода, перемешивают при комнатной температуре. Приблизительно 10 г порошка ниобия экстрагируют, перемешивая каждый раз в течение 1 часа, и каждую порцию порошка ниобия промывают чистой водой до тех пор, пока величина рН промывных вод не достигнет 7, и затем высушивают в вакууме, получая при этом в каждом из примеров 1-7 по 10 г порошка ниобия. Средний размер частиц и содержание Cr (хрома) в каждом из порошков ниобия приведены в таблице 1.

Таблица 1
Средний размер частиц порошка ниобия, мкмСодержание Cr, мас.ч. на млн.
Сравнительный пример0,965
Пример 10,849
Пример 20,835
Пример 31,019
Пример 40,98
Пример 51,05
Пример 60,90,8
Пример 70,90,5

После этого, используя порошок ниобия, полученный согласно каждому из примеров, получают по 30 единиц сформованных изделий, имеющих размер 1,8 мм × 3,5 мм × 4,5 мм. В это время прессованием закрепляют ниобиевую проволоку, имеющую диаметр 0,3 мм, служащую для подсоединения к проводнику. Полученные сформованные изделия спекают при 1250°С в вакууме при 7×10-3 Па, получая при этом спеченный продукт. Каждый спеченный продукт подвергают электрохимической обработке в водном 0,1%-ном растворе фосфорной кислоты при температуре 80°С и 12 В для формирования диэлектрического слоя, включающего оксид ниобия. После этого полипиррол (используют в качестве окислителя персульфат аммония и в качестве допанта - антрахинонсульфонат натрия, взаимодействие между пирролом и оксидантом повторяют в присутствии допанта) вводят в поры, имеющиеся в спеченном продукте, в качестве материала второго электрода. Кроме того, наносят слой углерода и слой серебряной пасты в указанном порядке, и после монтажа свинцового корпуса устройство как целое запрессовывают эпоксидной смолой, получая при этом конденсатор.

Все спеченные продукты согласно примерам имеют удельную площадь поверхности 1 м2/г. Емкость и показатель устойчивости к воздействию напряжения для изготовленных конденсаторов приведены в таблице 2.

Таблица 2
Емкость, мкФПоказатель устойчивости к воздействию напряжения, VКоличество замкнутых накоротко конденсаторов при приложении напряжения, равного показателю устойчивости к воздействию напряжения
Сравнительный пример80056
Пример 182067
Пример 2830825
Пример 3800820
Пример 4810818
Пример 5810816
Пример 683087
Пример 782086

Из приведенных данных для примеров 1-7 видно, что чем ниже становится содержание Cr в порошке ниобия, тем лучшие показатели устойчивости к воздействию напряжения может иметь конденсатор, изготовленный из такого порошка ниобия.

Промышленная применимость

При использовании ниобия для изготовления конденсаторов, являющегося предметом настоящего изобретения и содержащего незначительное количество хрома, может быть получен конденсатор с высокими показатели устойчивости к воздействию напряжения.

1. Ниобий для изготовления конденсаторов, в основном включающий ниобий, отличающийся тем, что содержание в нем хрома составляет 50 мас.ч. на млн. или менее.

2. Ниобий для изготовления конденсаторов, в основном включающий ниобий, по п.1, содержащий нитрид ниобия.

3. Ниобий для изготовления конденсаторов, в основном включающий ниобий, по п.1, содержащий карбид ниобия.

4. Ниобий для изготовления конденсаторов, в основном включающий ниобий, по п.1, содержащий борид ниобия.

5. Ниобий для изготовления конденсаторов, в основном включающий ниобий, по п.1, представляющий собой порошок, который имеет средний размер частиц от 0,1 до 3 мкм.

6. Ниобий для изготовления конденсаторов, в основном включающий ниобий, по п.1, представляющий собой гранулированный продукт на основе ниобия, имеющий средний размер частиц от 10 до 300 мкм.

7. Ниобий для изготовления конденсаторов, в основном включающий ниобий, по п.1, представляющий собой спеченный продукт на основе ниобия, который имеет удельную поверхность, определяемую по изотермам адсорбции методом Браунауэра-Эмета-Теллера (удельная БЭТ-поверхность), которая составляет от 0,5 до 7 м2/г.

8. Ниобий для изготовления конденсаторов по п.1, в котором содержание хрома составляет 40 мас.ч. на млн. или менее.

9. Ниобий для изготовления конденсаторов по п.1, в котором содержание хрома составляет 5 мас.ч. на млн. или менее.

10. Ниобий для изготовления конденсаторов по п.1, в котором содержание хрома составляет 3 мас.ч. на млн. или менее.

11. Конденсатор, состоящий из одного электрода, выполненного из спеченного ниобиевого продукта, в основном включающего ниобий, другого электрода и диэлектрического материала, расположенного между этими двумя электродами, причем спеченный продукт представляет собой спеченный продукт из ниобия для изготовления конденсаторов согласно любому из пп.1-10.

12. Конденсатор по п.11, в котором основной компонент диэлектрического материала, входящего в состав конденсатора, представляет собой оксид ниобия.

13. Конденсатор по п.11 или 12, в котором другой электрод представляет собой по меньшей мере один материал, выбранный из группы, состоящей из раствора электролита, органического полупроводника и неорганического полупроводника.

14. Конденсатор по п.13, согласно которому органический полупроводник представляет собой по меньшей мере один органический полупроводник, выбранный из группы, состоящей из органического полупроводника, включающего тетрамер бензопирролина и хлоранил, органического полупроводника, в основном включающего тетратиотетрацен, органического полупроводника, в основном включающего тетрацианохинодиметан, и органического полупроводника, в основном включающего электропроводящий полимер, полученный посредством введения допанта в полимер, содержащий повторяющееся звено, представленное следующими формулами (1) или (2):

где каждый из радикалов от R1 до R4 представляет собой моновалентную группу, выбранную из группы, состоящей из атома водорода, линейной или разветвленной, насыщенной или ненасыщенной алкильной, алкокси или алкильной группы сложного эфира, содержащей от 1 до 10 атомов углерода, атома галогена, нитрогруппы, цианогруппы, первичной, вторичной или третичной аминогруппы, группы CF3, фенильной группы и замещенной фенильной группы; углеводородные цепи каждой из пар радикалов R1 и R2, и R3 и R4 могут соединяться в произвольном положении с получением бивалентной цепи для образования по меньшей мере одной 3-, 4-, 5-, 6- или 7-членной насыщенной или ненасыщенной циклической углеводородной структуры вместе с атомами углерода, замещенными радикалами R1 и R2 или радикалами R3 и R4; объединенная циклическая цепь может содержать связь с карбонилом, простой эфирной группой, сложноэфирной группой, амидной группой, сульфидной группой, сульфинилом, сульфонилом или иминогруппой в произвольном положении;

Х представляет собой атом кислорода, атом серы или атом азота;

R5 присутствует только в том случае, когда Х представляет собой атом азота, и каждый R5 независимо представляет собой атом водорода или линейную или разветвленную, насыщенную или ненасыщенную алкильную группу, содержащую от 1 до 10 атомов углерода.

15. Конденсатор по п.14, согласно которому электропроводящий полимер представляет собой электропроводящий полимер, содержащий повторяющееся звено, представленное следующей формулой (3):

где R6 и R7 каждый независимо представляет собой атом водорода, линейную или разветвленную, насыщенную или ненасыщенную алкильную группу, содержащую от 1 до 6 атомов углерода, или заместитель, позволяющий образовать по меньшей мере одну 5-, 6- или 7-членную насыщенную циклическую углеводородную структуру, содержащую два кислородных фрагмента, получаемую из алкильных групп, которые сочетаются друг с другом в произвольном положении; причем циклическая структура включает структуру, содержащую виниленовую связь, которая может быть замещенной, и фениленовую структуру, которая может быть замещенной.

16. Конденсатор по п.13, в котором органический полупроводник представляет собой по меньшей мере одно соединение, выбранное из группы, состоящей из полипиррола, политиофена, полианилина и их замещенных производных.

17. Конденсатор по п.13, в котором органический или неорганический полупроводник имеет электропроводность от 10-2 до 103 См·см-1.

18. Способ получения ниобия для изготовления конденсаторов по одному из пп.1-10, отличающийся тем что он включает стадию снижения содержания хрома в веществе, в основном содержащем ниобий.

19. Способ получения ниобия для изготовления конденсаторов по п.18, согласно которому стадия снижения содержания хрома представляет собой стадию обработки вещества, в основном содержащего ниобий, раствором, содержащим по меньшей мере одну кислоту, выбранную из группы, состоящей из фтороводородной кислоты, азотной кислоты, серной кислоты и хлороводородной кислоты.

20. Способ получения ниобия для изготовления конденсаторов по п.18 или 19, согласно которому вещество, в основном содержащее ниобий, содержит нитрид ниобия.

21. Способ получения ниобия для изготовления конденсаторов по п.18 или 19, согласно которому вещество, в основном содержащее ниобий, содержит карбид ниобия.

22. Способ получения ниобия для изготовления конденсаторов по п.18 или 19, согласно которому вещество, в основном включающее ниобий, содержит борид ниобия.

23. Способ получения ниобия для изготовления конденсаторов по п.18, согласно которому вещество, в основном включающее ниобий, представляет собой порошок.

24. Способ получения ниобия для изготовления конденсаторов по п.23, согласно которому порошок ниобия имеет средний размер частиц от 0,1 до 3 мкм.

25. Способ получения ниобия для изготовления конденсаторов по п.18, согласно которому вещество, в основном включающее ниобий, представляет собой гранулированный ниобиевый продукт, обладающий средним размером частиц от 10 до 300 мкм.

26. Способ получения ниобия для изготовления конденсаторов по п.18, согласно которому вещество, в основном включающее ниобий, представляет собой ниобиевый спеченный продукт, удельная поверхность которого, определяемая по изотермам адсорбции методом Браунауэра-Эмета-Теллера (удельная БЭТ-поверхность), составляет от 0,5 до 7 м2/г.

27. Способ изготовления конденсатора, состоящего из одного электрода, в основном включающего ниобий, другого электрода и диэлектрического материала, расположенного между этими двумя электродами, отличающийся тем, что способ включает стадию снижения содержания хрома в электроде, в основном включающем ниобий по одному из пп.18-26.

28. Способ изготовления конденсатора, состоящего из одного электрода, в основном включающего ниобий, другого электрода и диэлектрического материала, расположенного между этими двумя электродами, отличающийся тем, что способ включает получение ниобия для изготовления конденсаторов согласно одному из пп.18-26.

29. Способ изготовления конденсатора по п.28, в котором диэлектрический материал конденсатора представляет собой оксид ниобия, полученный электролитическим окислением.

30. Электронная схема, в которой используют конденсатор согласно любому из пп.11-17.

31. Электронное устройство, в котором используют конденсатор согласно любому из пп.11-17.



 

Похожие патенты:

Изобретение относится к ниобиевому порошку для изготовления конденсаторов с большой удельной емкостью. .

Изобретение относится к области электротехники, в частности к порошку для конденсатора, состоящего в основном из ниобия с поверхностным покрытием, которое содержит, как минимум, один элемент из группы Al, Si, Ti, Zr, Y и Та, и к аноду конденсатора, состоящего из спекшего порошка с изолирующим слоем, полученным путем анодного окисления, где слой содержит, как минимум, один из элементов из группы Al, Si, Ti, Zr, Y и Та.

Изобретение относится к ниобиевым порошкам, способу их получения и конденсаторам, в которых они используются. .

Изобретение относится к получению порошка азотированного вентильного металла для применения в электротехнике. .

Изобретение относится к получению порошков металлов и к электролитическим конденсаторам, в которых они используются. .

Изобретение относится к ниобию и его оксидам, а также способам частичного восстановления оксида ниобия и конденсаторам на его основе. .

Изобретение относится к порошкам нитрида ниобия и электролитическим конденсаторам, использующим указанные порошки. .

Изобретение относится к ниобиевому порошку для изготовления конденсаторов с большой удельной емкостью. .

Изобретение относится к области электротехники, в частности к порошку для конденсатора, состоящего в основном из ниобия с поверхностным покрытием, которое содержит, как минимум, один элемент из группы Al, Si, Ti, Zr, Y и Та, и к аноду конденсатора, состоящего из спекшего порошка с изолирующим слоем, полученным путем анодного окисления, где слой содержит, как минимум, один из элементов из группы Al, Si, Ti, Zr, Y и Та.

Изобретение относится к новым материалам для конденсаторов, способу их получения и конденсаторам, использующим эти материалы. .
Изобретение относится к области разработки электролитических конденсаторов на основе двойного электрического слоя, которые могут быть при определенных условиях использованы в современной энергетике, автомобилестроении и т.д.

Изобретение относится к технологии изготовления электролитических конденсаторов, в частности, к катодной фольге алюминиевого электролитического конденсатора, и способу ее изготовления.
Изобретение относится к электронной технике и может быть использовано в производстве высокоемких оксидных конденсаторов с объемно-пористым анодом. .

Изобретение относится к технологии производства оксидно-полупроводниковых конденсаторов (ОПК) с твердым электролитом, анод которых изготовлен из тантала, алюминия или иного вентильного металла и их сплавов.

Изобретение относится к области электрохимии, а именно к способам восстановления оксида ниобия, включающим тепловую обработку исходного оксида ниобия в присутствии материала-газопоглотителя в атмосфере, обеспечивающей возможность переноса атомов кислорода из исходного оксида ниобия к материалу-газопоглотителю, в течение достаточного времени и при достаточной температуре для того, чтобы исходный оксид ниобия и указанный материал-газопоглотитель образовали оксид ниобия с пониженным содержанием кислорода
Наверх