Сборный шлифохонинговальный инструмент для многоступенчатых отверстий

Изобретение относится к области абразивной обработки и может быть использовано при производстве инструмента для обработки многоступенчатых деталей, в частности беговых дорожек шарошек и лап буровых долот. Инструмент содержит несколько кругов, соосно установленных на шпинделе. Круги имеют перепады диаметров, соответствующие перепадам диаметров обрабатываемых ступеней заготовки. Круг с минимальным диаметром выполнен со сплошной рабочей поверхностью, а остальные круги - с прерывистой из отдельных абразивно-алмазных сегментов на гибкой связке, закрепленных на упругих торовых оболочках. Прерывистые круги установлены под углом αi к плоскости, перпендикулярной оси вращения, с образованием аксиально смещенного режущего слоя. В шпинделе предусмотрены центральное продольное и поперечные отверстия, через которые осуществлена подача сжатого воздуха в упругие оболочки. Приведена математическая зависимость для определения величины αi угла наклона кругов и для входящих в нее параметров. В результате повышаются производительность обработки, точность формы и стабильность качества поверхности по всей ширине каждой ступени, а также снижается расход абразива. 6 ил.

 

Изобретение относится к производству алмазно-абразивного инструмента для обработки многоступенчатых деталей и может найти применение, например, при обработке беговых дорожек шарошек и лап буровых долот.

Известен сборный инструмент, работающий по способу шлифования многоступенчатых деталей, при котором шлифование всех ступеней деталей производят одновременно несколькими соосно установленными кругами, имеющими диаметры, перепады которых соответствуют перепадам обрабатываемых ступеней детали, с прерывистыми рабочими поверхностями, при этом отношение длины рабочей поверхности шлифовального круга к длине взаимодействующей с ней поверхности обрабатываемой ступени постоянно [1].

Недостаток данного инструмента состоит в том, что он в процессе шлифования не обеспечивает высокой точности перепадов диаметров детали и стабильного качества поверхностного слоя каждой обрабатываемой ступени, так как окружные рабочие скорости каждого составляющего круга шлифовального блока различны (шлифовальный блок составлен из набора кругов различных диаметров).

Скорости шлифовального круга оказывают влияние на всю совокупность показателей обработки: толщину слоя, снимаемую одним абразивным зерном; силу резания, развиваемую одним зерном; шероховатость шлифованной поверхности; мгновенную температуру в зоне работы зерна; износ шлифовального круга и др. показатели. То есть способ и инструмент не учитывают влияние режимных параметров обработки (скорости круга и скорости детали в каждом поперечном сечении взаимодействующих поверхностей круга и заготовки) и тем самым не обеспечивают высокой точности и стабильности качества поверхности каждой ступени.

При этом, делая периферийную режущую поверхность искусственно прерывистой и образование впадин путем прорезания, неэффективно используют возможности абразивного инструмента, снижают производительность металлосъема и КПД процесса, увеличивают расход абразива.

Известен сборный шлифовальный инструмент, содержащий корпус, на котором установлены абразивные круги с прерывистой рабочей поверхностью, образованной чередующимися выступами и впадинами, боковые поверхности выступов в радиальном направлении имеют криволинейную форму, определяемую из соотношения:

l=R1α1-RiαI,

где l - длина дуги рабочего участка выступа на Ri радиусе круга;

R1 - первоначальный радиус шлифовального круга;

α1 - центральный угол в радианах дуги выступов, соответствующий первоначальному радиусу шлифовального круга;

αi, Ri - текущие значения соответственно центрального угла и радиуса шлифовального круга [2].

Недостаток данного инструмента состоит в том, что он в процессе шлифования не обеспечивает высокой точности перепадов диаметров детали и стабильного качества поверхностного слоя каждой обрабатываемой ступени, так как окружные рабочие скорости каждого составляющего круга шлифовального блока различны (шлифовальный блок составлен из набора кругов различных диаметров). Скорости шлифовального круга оказывают влияние на всю совокупность показателей обработки: толщину слоя, снимаемую одним абразивным зерном; силу резания, развиваемую одним зерном; шероховатость шлифованной поверхности; мгновенную температуру в зоне работы зерна; износ шлифовального круга и др. показатели. Кроме того, периферийная режущая поверхность, искусственно сделанная прерывистой путем прорезания и образования впадин, неэффективно использует возможности абразивного инструмента, снижает производительность металлосъема и КПД процесса, увеличивает расход абразива.

Техническим результатом предлагаемого инструмента является повышение точности формы и стабильности качества поверхности вдоль всей ширины каждой ступени, повышение производительности металлосъема и КПД процесса, а также снижение расхода абразива.

Технический результат достигается тем, что используют сборный шлифохонинговальный инструмент для многоступенчатых отверстий, содержащий несколько соосно установленных на шпинделе кругов, имеющих диаметры, перепады которых соответствуют перепадам диаметров обрабатываемых ступеней заготовки, при этом круг с минимальным диаметром выполнен со сплошной рабочей поверхностью, а остальные круги - с прерывистой рабочей поверхностью из отдельных абразивно-алмазных сегментов на гибкой связке, закрепленных на упругих торовых оболочках, и установлены под углом αi к плоскости, перпендикулярной оси вращения, с образованием аксиально смещенного режущего слоя, причем величина угла αi определена по формуле:

αi=arc tg[(li-Bi)/Din],

где αi - угол наклона к плоскости, перпендикулярной оси вращения, i-го круга, кроме круга с минимальным диаметром;

li - длина отверстия i-ой ступени;

Bi - высота аксиально смещенного режущего слоя каждого круга с прерывистой рабочей поверхностью, принимаемая в пределах

li>Bi≥0,5li;

Din - переменный диаметр i-го круга, обеспечивающий необходимую площадь контакта с i-ой ступенью заготовки и определяемый из условия постоянства площадей контакта всех кругов, включая круг с минимальным диаметром, по формуле:

di - диаметр отверстия i-ой ступени;

В1 - высота первого минимального круга, равная длине l1 первой ступени;

L1 - длина кривой контакта первого круга с заготовкой при внутреннем шлифовании методом поперечной подачи при вращении круга и заготовки в противоположных направлениях, определяется по известной формуле;

Vзi - окружная скорость i-ой ступени заготовки;

Vui - окружная скорость i-го круга;

di - диаметр i-ой ступени заготовки;

Di min - минимальный диаметр i-го круга, при котором он только соприкасается с внутренней поверхностью обрабатываемой i-ой ступени, а через центральное продольное и поперечные отверстия в шпинделе осуществлена подача сжатого воздуха переменного давления в упругие торовые оболочки кругов с прерывистой рабочей поверхностью для приведения инструмента в рабочее состояние, при котором устанавливаются диаметры Din i-ых кругов.

Сущность изобретения иллюстрируется чертежами.

На фиг.1 изображена схема способа обработки внутренней поверхности двухступенчатой заготовки предлагаемым сборным шлифохонинговальным инструментом, работающим в режиме шлифования, частичный продольный разрез; на фиг.2 - общий вид инструмента в нерабочем состоянии (без сжатого воздуха в упругой оболочке); на фиг.3 - схема способа обработки внутренней поверхности двухступенчатой заготовки предлагаемым сборным шлифохонинговальным инструментом, работающим в режиме хонингования всей рабочей поверхностью, продольный разрез; на фиг.4 - поперечный разрез А-А на фиг.3; на фиг.5 - схема способа обработки внутренней поверхности двухступенчатой заготовки предлагаемым сборным шлифохонинговальным инструментом, работающим в режиме хонингования всей рабочей поверхностью i - круга, общий вид; на фиг.6 - схема к определению переменного диаметра Din i-ого круга.

Предлагаемый сборный шлифохонинговальный инструмент предназначен для предварительной и окончательной чистовой обработки многоступенчатых отверстий одновременно всех ступеней.

Сборный инструмент включает несколько соосно установленных кругов 1, 2, ...i, по количеству равных количеству ступеней многоступенчатого отверстия, работающего методом поперечной подачи при вращении инструмента и заготовки в противоположных направлениях. 1-ый минимального диаметра круг взят сплошным, остальные выполнены сборными и состоят из отдельных алмазно-абразивных сегментов 3 на гибкой связке, закрепленных на упругих торовых оболочках 4, поэтому круги 2, ...i имеют прерывистую периферийную рабочую поверхность.

Круги 1, 2, ...i имеют диаметры, перепады которых соответствуют перепадам обрабатываемых ступеней заготовки.

Отдельные алмазно-абразивные сегменты 3 кругов закреплены на упругих оболочках 4 в виде торов. В качестве сегментов 3 могут быть алмазно-абразивные слои соответствующей формы на гибкой (например, резиновой, каучуковой или др.) связке, а также лепестки алмазно-абразивной шкурки на тканевой основе. Для увеличения периода стойкости инструмента в качестве абразивного материала используют эльбор, искусственные и природные алмазы на каучуковой связке, толщина алмазно-абразивного слоя 3 на гибкой связке составляет 1 мм и более.

Упругая оболочка 4 изготовлена, например, из резины или другого эластичного материала в виде тора и приводится в рабочее состояние путем подачи сжатого воздуха через центральное продольное 5 и поперечные 6 отверстия в шпинделе 7, на котором установлен сборный инструмент.

Круги 2, ...i, кроме первого круга с минимальным диаметром Dl, установлены под углом αi к плоскости, перпендикулярной оси вращения, и образуют аксиально смещенный режущий слой высотой В2...Вi.

Установку кругов 2, ...i под углом αi осуществляют с помощью косых шайб 8, расположенных попарно с торцов каждого круга, и дисков 9, которые поддерживают форму круга. Путем взаимного разворота косых шайб 8 относительно друг друга производят установку круга под необходимым углом αi.

Величину угла αi для установки кругов 2, ...i, кроме первого, определяют по формуле:

αi=arc tg[(li-Bi)/Din],

где αi - угол наклона к плоскости, перпендикулярной оси вращения, i-го круга, кроме круга с минимальным диаметром;

li, di - соответственно, длина и диаметр отверстия i-й ступени;

Вi - высота аксиально смещенного режущего слоя каждого круга, кроме круга с минимальным диаметром, при этом высота Вi принимается в пределах li>Bi≥0,51li;

Din - переменный диаметр i-го круга, обеспечивающий необходимую площадь контакта с i-ой ступенью заготовки, определяемый из условия постоянства площадей контакта всех кругов, включая круг с минимальным диаметром, по формуле см. ниже.

При шлифовании известными обычными, а также [1 и 2] многоступенчатыми кругами качество поверхностного слоя каждой заготовки в партии будет разное, так как толщина срезаемого слоя металла одним алмазно-абразивным зерном постоянна в каждом поперечном сечении ступеней заготовки, причем значение этой толщины изменяется по мере износа кругов. При постоянстве частоты вращения шпинделя инструмента уменьшение диаметра круга вызывает резкое увеличение толщины срезаемого слоя. При этом происходит неравномерный радиальный износ рабочего профиля шлифовального круга. С уменьшением диаметра круга, по мере износа, круг изнашивается более интенсивно (работает как более мягкий), уменьшается размерная стойкость профиля инструмента. Неравномерный радиальный износ рабочего профиля круга переносится на обрабатываемую поверхность заготовки. В результате обрабатываемая поверхность принимает искаженную форму, не обеспечивается высокая точность перепадов диаметров заготовки [3].

Предлагаемый инструмент лишен этих недостатков, так как площади контактов кругов каждой ступени равны и металлосъем каждым кругом одинаков, благодаря тому, что 2-ой и последующие i-е круги изменяют (увеличивают) величину наружного диаметра до значения, когда вышеназванные площади уравниваются путем подачи сжатого воздуха в упругую оболочку, из которой состоит каждый корпус круга, кроме первого минимального круга.

Площадь контакта первого минимального круга с обрабатываемой поверхностью заготовки определяется по формуле:

где S1 - площадь контакта первого минимального круга с обрабатываемой поверхностью заготовки;

В1 - высота первого минимального круга, равная длине l1 первой ступени;

L1 - длина кривой контакта первого круга с заготовкой при внутреннем шлифовании методом поперечной подачи при вращении круга и заготовки в противоположных направлениях, определяется по формуле (36), с.61, [3]:

Vз1 - окружная скорость первой минимальной ступени заготовки;

Vu1 - окружная скорость первого минимального круга;

D1 - диаметр первого минимального круга;

d1 - диаметр первой минимальной ступени заготовки;

t1 - поперечная подача в мм на оборот первого минимального круга.

Площадь контакта i-го круга с обрабатываемой i-ой ступенью заготовки аналогично определяется:

Вi - высота i-го круга, как указывалось выше, принимается в пределах:

li - длина i-ой ступени заготовки;

Li - длина кривой контакта i-го круга с заготовкой при внутреннем шлифовании методом поперечной подачи при вращении круга и заготовки в противоположных направлениях, определяется аналогично по ф. (2):

Vзi - окружная скорость i-ой ступени заготовки;

Vui - окружная скорость i-го круга;

Din - переменный диаметр i-го круга, обеспечивающий необходимую площадь контакта с i-ой ступенью заготовки;

di - диаметр i-ой ступени заготовки;

ti - значение глубины резания кругом диаметром Din, которое равно:

Di min - минимальный диаметр i-го круга, при котором он только соприкасается с внутренней поверхностью обрабатываемой i-ой ступени.

Приравняем правые части равенств (1) и (3) с учетом значений (5) и (6) и, решив равенство относительно искомого переменного Din, найдем его значение.

Сборный инструмент работает следующим образом.

В нерабочем состоянии без сжатого воздуха в упругих оболочках наружный диаметр каждого круга по алмазно-абразивным брускам меньше внутреннего диаметра обрабатываемой ступени многоступенчатого отверстия, поэтому инструмент свободно вводится в отверстие заготовки.

Инструмент крепится жестко на шпинделе, например, шлифовальной бабки внутришлифовального станка, обрабатываемая заготовка, например шарошка бурового долота, - на шпинделе передней бабки.

Инструмент совершает вращательное движение со скоростью Vи, а радиальная подача Sp алмазно-абразивных сегментов осуществляется с помощью подачи сжатого воздуха в упругие оболочки кругов, благодаря чему диаметр каждого i-го круга по алмазно-абразивным сегментам становится равным диаметру Din. Шпиндель 7 инструмента совершает поперечную подачу t1 как при обычном врезном шлифовании отверстий. Заготовке придают вращательное движение Vз в противоположном направлении относительно вращения инструмента.

Таким образом, происходит алмазно-абразивная обработка одновременно всеми кругами с осцилляцией сегментов, кроме минимального круга, которая существенно улучшает качество обработанной поверхности и повышает в несколько раз производительность.

Осцилляция сегментов в сочетании с прерывистым резанием отдельными сегментами снижают температуру насыщения в поверхностном слое обрабатываемой заготовки и гарантируют бесприжоговость обработки.

Благодаря этому облегчается съем материала и стружкообразование, улучшается самозатачивание зерен, а переменные силы активно перераспределяются в плоскости резания, и сила трения уменьшается в несколько раз. Перекрестное осциллирующее движение увеличивает число активно работающих абразивных зерен и интенсифицирует срезание выступов неровностей поверхности. При этом на обработанной поверхности формируется износостойкий регулярный микрорельеф с перекрестным направлением рисок и неровностями малой и однородной высоты.

Преимущества предлагаемого инструмента для алмазно-абразивной обработки многоступенчатых отверстий: более плавная безударная обработка; большая жесткость технологической системы; повышается качество и точность обработки, расширяются технологические возможности и появляется возможность обрабатывать как конические, так и цилиндрические, а также фасонные ступени отверстий; возможность снятия больших неравномерных припусков; в 2-3 раза повышается производительность обработки благодаря большой площади контакта инструмента с заготовкой.

Быстрое изменение и установка оптимального значения диаметров Din кругов в зависимости от конкретных условий за счет изменения давления Рсж подаваемого сжатого воздуха способствует увеличению производительности.

Предлагаемый инструмент работает в двух режимах:

- в режиме предварительной чистовой обработки шлифованием одновременно всех ступеней многоступенчатых отверстий с установкой оптимальных значений диаметров Din кругов, кроме минимального сплошного круга;

- в режиме окончательной чистовой обработки хонингованием одновременно всех ступеней многоступенчатых отверстий с установкой максимальных значений диаметров Di max кругов, равных диаметру соответствующих ступеней, при этом первый минимальный сплошной круг работает в режиме обычного выхаживания. Этот режим снижает отклонение формы и повышает размерную точность, уменьшает шероховатости поверхности, сохраняет микротвердость и структуру поверхностного слоя, увеличивает несущую поверхность и остаточные сжимающие напряжения.

Благодаря применению упругой оболочки и равномерному распределению давления сжатого воздуха на все сегменты, независимо от случайной разной толщины алмазно-абразивного слоя на сегментах и других погрешностей изготовления и сборки инструмента, сегменты равномерно распределяют между собой снимаемый припуск, обеспечивая безвибрационную работу инструмента.

Конкретно реализацию предлагаемого инструмента покажем на примере обработки дорожек качения шарошки бурового долота.

Заготовка: диаметр и длина малой ступени - соответственно, 41,7 мм и 25 мм; диаметр и длина большой ступени - соответственно, 70,7 мм и 30 мм; марка абразивных сегментов на кругах и марка минимального круга - 24А 25 СМ1 К 5, диаметр минимального круга - 32; количество сегментов на большом круге - 8, величина впадины - 5 мм. Режимные параметры: частота вращения инструмента - 14000 мин-1; частота вращения заготовки 30 мин-1; припуск на сторону - 0,15 мм. Подача врезания t1=0,005 мм/об. Давление подаваемого сжатого воздуха Рсж=0,4...0,6 МПа.

Высоту B2 аксиально смещенного режущего слоя большого круга устанавливали согласно рекомендации по ф. (4) B2=15 мм; значение угла наклона второго большого круга определяли по формуле αi=arc tg[(li-Bi)/Din]=12°35/, но предварительно определяли оптимальный диаметр большого круга Din, который равен 67,64 мм.

При данных конструктивных параметрах большого круга малая и большая ступени заготовки обрабатывались при одинаковых условиях шлифования. Кроме того, данное постоянство сохранялось для каждой детали в партии до полного износа сегментов кругов. Это привело к повышению ряда дополнительных технико-экономических показателей процесса врезного шлифования: сокращению расхода абразивных сегментов кругов и дорогостоящего правящего инструмента, повышению производительности обработки.

С применением инструмента создаются условия для широкого использования его в автоматическом цикле процесса алмазно-абразивной обработки.

Предлагаемый сборный алмазно-абразивный инструмент для обработки многоступенчатых отверстий, состоящий из кругов с аксиально смещенным режущим слоем, кроме минимального круга, обеспечивает постоянство:

- нагрузки на шлифующее зерно;

- силы резания, развиваемой одним зерном в каждой ступени и в каждом сечении;

- контактной температуры в зоне шлифования и все остальные параметры процесса шлифования.

Это приводит к равномерному износу рабочих профилей алмазно-абразивных кругов, а следовательно, и к повышению точности формы поверхностей, т.к. при врезном шлифовании форма профиля круга копируется на форме обрабатываемой поверхности, стабильности качества поверхности вдоль всей ширины ступени.

Источники информации

1. А.с. SU №795889, В 24 В 1/00, В 24 В 5/12. 15.01.81. Способ шлифования многоступенчатых деталей.

2. А.с. SU №872238, В 24 D 5/00, В 24 17/00. 15.10.81. Сборный шлифовальный инструмент - прототип.

3. Маслов Е.Н. Теория шлифования металлов. М.: Машиностроение. - 1974, - 320 с.

Сборный шлифохонинговальный инструмент для многоступенчатых отверстий, содержащий несколько соосно установленных на шпинделе кругов, имеющих диаметры, перепады которых соответствуют перепадам диаметров обрабатываемых ступеней заготовки, при этом круг с минимальным диаметром выполнен со сплошной рабочей поверхностью, а остальные круги - с прерывистой рабочей поверхностью из отдельных абразивно-алмазных сегментов на гибкой связке, закрепленных на упругих торовых оболочках, и установлены под углом αi к плоскости, перпендикулярной оси вращения, с образованием аксиально смещенного режущего слоя, причем величина угла α, определена по формуле

αi=arctg[(li-Bi)/Din],

где αi - угол наклона к плоскости, перпендикулярной оси вращения, i-го круга, кроме круга с минимальным диаметром;

li - длина отверстия i-й ступени;

Вi - высота аксиально смещенного режущего слоя каждого круга с прерывистой рабочей поверхностью, принимаемая в пределах li>Bi≥0,5li;

Din - переменный диаметр i-го круга, обеспечивающий необходимую площадь контакта с i-й ступенью заготовки и определяемый из условия постоянства площадей контакта всех кругов, включая круг с минимальным диаметром, по формуле

di -диаметр отверстия i-й ступени;

Bi - высота первого минимального круга, равная длине l1 первой ступени;

L1 - длина кривой контакта первого круга с заготовкой при внутреннем шлифовании методом поперечной подачи при вращении круга и заготовки в противоположных направлениях;

Vзi - окружная скорость i-й ступени заготовки;

Vui - окружная скорость i-го круга;

Dimin - минимальный диаметр i-го круга, при котором он лишь соприкасается с внутренней поверхностью обрабатываемой i-й ступени,

а через центральное продольное и поперечные отверстия в шпинделе осуществлена подача сжатого воздуха переменного давления в упругие торовые оболочки кругов с прерывистой рабочей поверхностью для приведения инструмента в рабочее состояние, при котором устанавливаются диаметры Din i-х кругов.



 

Похожие патенты:

Изобретение относится к области абразивной обработки и может быть использовано для обработки многоступенчатых деталей, в частности беговых дорожек шарошек и лап буровых долот.

Изобретение относится к области машиностроения и может быть использовано при электромеханической обработке шлифовальными и полировальными кругами с использованием совмещенных технологий и с нанесением активных импрегнаторов для совершенствования структуры поверхностного слоя.

Изобретение относится к области машиностроения и может быть использовано при электромеханической обработке шлифовальными и полировальными кругами на основе использования совмещенных технологий.

Изобретение относится к области абразивной обработки и может быть использовано при производстве алмазно-абразивного инструмента для обработки многоступенчатых деталей, в частности беговых дорожек шарошек и лап буровых долот.

Изобретение относится к области машиностроения и может быть использовано при изготовлении алмазно-абразивного инструмента для обработки деталей типа валов, валов с эксцентрическими поверхностями, винтовых поверхностей винтов из трудношлифуемых материалов.

Изобретение относится к области машиностроения и может быть использовано при алмазно-абразивной обработке деталей типа валов, валов с эксцентрическими поверхностями, винтовых поверхностей винтов из трудношлифуемых материалов.

Изобретение относится к области обработки материалов абразивными инструментами и может быть применено в любой отрасли промышленности для шлифования, полирования, резания, зачистки изделий и деталей различного назначения.

Изобретение относится к области машиностроения и может быть использовано для эффективной чистовой алмазно-абразивной обработки заготовок из различных металлов, предрасположенных к дефектообразованию.

Изобретение относится к области машиностроения и может быть использовано при изготовлении инструмента для механической обработки с целью резания металла, удаления шлака, продуктов коррозии, прокатной окалины, заусенцев на фрезерных, многопозиционных и многооперационных станках.

Изобретение относится к области абразивной обработки и может быть использовано при шлифохонинговании многоступенчатых деталей, в частности беговых дорожек шарошек и лап буровых долот

Изобретение относится к области машиностроения и может быть использовано при изготовлении алмазно-абразивного инструмента для обработки внутренних поверхностей канавок и пазов методом глубинного периферийного шлифования

Изобретение относится к области машиностроения и может быть использовано при обработке внутренних поверхностей канавок и пазов методом глубинного периферийного шлифования

Изобретение относится к области машиностроения и может быть использовано для удаления шлака, продуктов коррозии, прокатной окалины, заусенцев с плоских поверхностей при совместном использовании иглофрезерования и шлифования

Изобретение относится к области машиностроения и может быть использовано для удаления шлака, продуктов коррозии, прокатной окалины, заусенцев с плоских поверхностей при совместном использовании иглофрезерования и алмазно-абразивной обработки

Изобретение относится к области машиностроения и может быть использовано при алмазно-абразивной обработке отверстий в деталях машин

Изобретение относится к области машиностроения и может быть использовано при алмазно-абразивной обработке отверстий в деталях машин

Изобретение относится к области машиностроения и может быть использовано при алмазно-абразивной обработке заготовок винтов и других деталей типа валов из сталей и сплавов многоэлементным пружинным инструментом

Изобретение относится к области абразивной обработки и может быть использовано при изготовлении шлифовальных, сверлильных и буровых инструментов на основе смеси абразивных зерен и металлической связки

Изобретение относится к области абразивной обработки и может быть использовано при изготовлении абразивных инструментов
Наверх