Способ восстановления газом оксидсодержащих руд в виде частиц (варианты) и устройство для его осуществления

Изобретение относится к восстановлению газом оксидсодержащих руд в виде частиц, в частности содержащего оксид железа материала, с использованием псевдоожиженного слоя. Руду нагревают с помощью полученного из угля восстановительного газа в выполненном в виде ступени подогрева реакторе с псевдоожиженным слоем, затем восстанавливают в губчатое железо, по меньшей мере, в одном выполненном в виде ступени восстановления реакторе с псевдоожиженным слоем. Восстановительный газ по подающему трубопроводу и трубопроводу во встречном направлении подаваемого от ступени к ступени восстанавливаемого материала направляют от ступени восстановления к ступени подогрева и после очистки удаляют в виде отходящего газа. К восстановительному газу, подаваемому к ступени подогрева или к ступеням восстановления и подогрева, подводят тепло за счет сжигания части отходящего газа вместе с кислородом и/или воздухом. Другими вариантами являются подведение тепла к восстановительному газу, подаваемому к ступени восстановления и/или к ступени подогрева, за счет сжигания части охлаждающего газа, используемого для охлаждения введенного в зону окончательного восстановления восстановительного газа, или внешнего горючего газа, и/или твердого, и/или жидкого топлива вместе с кислородом и/или воздухом, вместе с кислородом и/или воздухом. Изобретение позволит независимо регулировать температуру на отдельных ступенях без существенного увеличения количества восстановительного газа или увеличения размеров частей установки. 4 н. и 21 з.п. ф-лы, 9 ил.

 

Изобретение относится к способу восстановления газом оксидсодержащих руд в виде частиц, в частности содержащего оксид железа материала, способом псевдоожиженного слоя при давлении ≤5 бар, причем руду с помощью полученного из угля восстановительного газа нагревают в выполненном в виде ступени подогрева реакторе с псевдоожиженным слоем, при необходимости также предварительно восстанавливают, затем, по меньшей мере, в одном выполненном в виде ступени восстановления реакторе с псевдоожиженным слоем восстанавливают в губчатое железо, причем восстановительный газ по подающему трубопроводу или трубопроводу во встречном направлении направляемого от ступени к ступени восстанавливаемого материала направляют от ступени восстановления к ступени подогрева и после очистки удаляют в виде отходящего газа, а также к установке для осуществления способа.

Если восстановление оксидсодержащей руды в виде частиц происходит в нескольких установленных друг за другом реакторах с псевдоожиженным слоем, причем восстановительный газ в противотоке к руде подают от одного реактора к другому, то происходит периодическое нагревание твердого вещества при одновременном уменьшении энтальпии восстановительного газа, что частично обусловлено также протекающими реакциями при восстановлении. На отдельных ступенях восстановления при определенных обстоятельствах это может привести для твердого вещества к низким температурам, что будет препятствовать реакции между восстановительным газом и оксидсодержащей рудой кинетически и термодинамически, т.е. восстановление руды во время ее пребывания в восстановительном реакторе будет происходить не до нужной степени.

В известном из АТ 402937 В способе описанного выше рода содержащий оксид железа материал восстанавливают в четырех последовательно расположенных зонах восстановления с псевдоожиженным слоем. Для того чтобы во всех зонах восстановления с псевдоожиженным слоем установить приблизительно одинаково высокую постоянную температуру, свежеполученный восстановительный газ в зонах восстановления с псевдоожиженным слоем, частично следующих за первой в направлении потока восстановительного газа зоной восстановления с псевдоожиженным слоем, дополнительно подают непосредственно к восстановительному газу, последовательно протекающему через зоны восстановления с псевдоожиженным слоем, так что зоны восстановления с псевдоожиженным слоем в отношении подачи восстановительного газа расположены как последовательно, так и параллельно. Дополнительно подаваемый свежеполученный восстановительный газ подают при этом к отдельным зонам восстановления с псевдоожиженным слоем преимущественно в количестве 5-15%.

Недостатком при этом является, однако, то, что ступени предварительного восстановления вплоть до ступени подогрева должны быть рассчитаны на все более возрастающие количества газа, поскольку на каждой из ступеней, следующих за ступенью окончательного восстановления, к покидающему предыдущую ступень восстановительному газу добавляется дополнительный свежий восстановительный газ. Если исходить далее из того, что в зоне окончательного восстановления в любом случае требуется определенное количество восстановительного газа для полного восстановления применяемого материала, независимо от того, имеется ли параллельная подача восстановительного газа или нет, у устройства в АТ 402937 В, в целом, возникает больший расход восстановительного газа.

В WO 97/13880 А и WO 97/13878 А описан способ, в котором часть восстановительного газа, поступающего из ступени окончательного восстановления на ступень предварительного восстановления, отводят, промывают, очищают от СО2, а также нагревают, а затем возвращают на ступень окончательного восстановления. На ступени подогрева кислород сжигают с частью введенного на эту ступень восстановительного газа с целью повышения его температуры.

Согласно WO 97/13880 А и WO 97/13878 А температурами в реакторах с псевдоожиженным слоем, соответствующих ступеням окончательного восстановления и подогрева, управляют посредством возврата газа или частичного сжигания. Расположенные между этими обеими ступенями реакторы, напротив, независимы от условий в реакторе с псевдоожиженным слоем для окончательного восстановления.

Из JP 58-34114 А известен способ восстановления мелкозернистой железной руды, в котором восстановительный газ для ступени окончательного восстановления получают путем разложения и риформинга углеводорода посредством удаленного из зоны окончательного восстановления окислительного отходящего газа, причем железную руду на первой ступени предварительно восстанавливают отделенным от углеводорода углеродом. Для вырабатывания энергии, необходимой для получения восстановительного газа, окислительный отходящий газ нагревают, прежде чем ввести его в контакт с углеводородом.

В US 3985547 А описан способ восстановления железной руды в реакторе с несколькими псевдоожиженными слоями, в котором свежий восстановительный газ получают путем достехиометрического сжигания метана и кислорода в соответствующей реактору горелке, выпускное отверстие которой расположено между самым нижним и вышележащим псевдоожиженными слоями. Выходящий из самого верхнего псевдоожиженного слоя, израсходованный восстановительный газ очищают, освобождают от воды и СО2 и в нагретом состоянии подают к самому нижнему псевдоожиженному слою в виде рисайклингового восстановительного газа.

Задачей изобретения является создание в способе описанного выше рода возможности независимого повышения температуры на отдельных ступенях восстановления без необходимости существенного увеличения количества восстановительного газа или увеличения размеров частей установки. Целью является установление температуры в каждой отдельной зоне восстановления с псевдоожиженным слоем и установление оптимального температурного профиля твердого вещества/газа, а также качественного профиля газа над ступенями с псевдоожиженным слоем.

Эта задача решается согласно изобретению в способе восстановления газом оксидсодержащих руд в виде частиц, в частности содержащего оксид железа материала, с использованием псевдоожиженного слоя при давлении меньше 5 бар, в котором руду нагревают с помощью полученного из угля восстановительного газа в выполненном в виде ступени подогрева реакторе с псевдоожиженным слоем, затем восстанавливают в губчатое железо, по меньшей мере, в одном выполненном в виде ступени восстановления реакторе с псевдоожиженным слоем и восстановительный газ по подающему трубопроводу и трубопроводу во встречном направлении подаваемого от ступени к ступени восстанавливаемого материала направляют от ступени восстановления к ступени подогрева и после очистки удаляют в виде отходящего газа, при этом к восстановительному газу, подаваемому к ступени подогрева или к ступеням восстановления и подогрева, подводят тепло за счет сжигания части отходящего газа вместе с кислородом и/или воздухом.

Другая возможность решения задачи согласно изобретению состоит в том, что часть охлаждающего газа, используемого для охлаждения введенного в зону окончательного восстановления восстановительного газа, сжигают вместе с кислородом и/или воздухом.

Ввод кислорода в восстановительный газ обеспечивает индивидуальное распределение энергии по отдельным реакторам, так что, например, у трех реакторов с псевдоожиженным слоем входная температура восстановительного газа при вводе кислорода или воздуха во все три реактора могла бы выглядеть следующим образом: 920°С (1-й реактор)/890°С (2-й реактор)/900°С (3-й реактор). Если бы ввод кислорода или воздуха происходил только до реактора с псевдоожиженным слоем, соответствующего ступени подогрева (3-й реактор) и ступени окончательного восстановления (1-й реактор), то для того, чтобы достичь такого же результата восстановления, входные температуры пришлось бы изменить на 920°С/750°С/1140°С, что привело бы к повышенной термической нагрузке реактора 3 и загруженной в реактор 3 руды. Эта проблема устраняется с помощью способа согласно изобретению.

За счет повышения температуры восстановительного газа согласно изобретению реакции авториформинга в газовой фазе являются термодинамически и кинетически предпочтительными, причем при необходимости имеющаяся в восстановительном газе пыль действует как катализатор. У этих реакций авториформинга происходит превращение метана диоксидом углерода в моноксид углерода или водяным паром в водород. Из-за этого происходящего в нужном месте генерирования восстановительных компонентов улучшаются состав восстановительного газа и, тем самым, также термодинамически восстановление руды.

Преимущественно сжигаемую часть восстановительного газа, отходящего газа или охлаждающего газа перед сжиганием подвергают процессу промывки, благодаря чему предотвращаются возникающие локально за счет сжигания запыленных газов очень высокие температуры, которые могут привести к плавлению пыли в результате реакции Будуара.

Необходимый для сжигания восстановительного газа кислород или воздух вводят предпочтительно через копья, действующие одновременно в качестве горелок, в подающий трубопровод или в трубопровод для восстановительного газа, который транспортирует восстановительный газ в первую или от первой зоны восстановления с псевдоожиженным слоем в расположенную за ней зону восстановления. За счет этого расположения затраты на оборудование поддерживаются на очень низком уровне.

Другая возможность установления температуры на ступенях восстановления с псевдоожиженным слоем состоит в том, что к восстановительному газу путем сжигания внешнего горючего газа, и/или твердых, и/или жидких топлив вместе с кислородом и/или воздухом подводят тепло.

Согласно предпочтительной форме выполнения сжигание горючих газов или твердых и/или жидких топлив происходит в горелке, предусмотренной в подающем трубопроводе и в трубопроводе для восстановительного газа. Целесообразно трубопровод может иметь в этом месте утолщение.

Согласно другой предпочтительной форме выполнения сжигание горючего газа или твердого и/или жидкого топлива происходит в камере сгорания отдельной от подающего трубопровода и трубопровода для восстановительного газа, причем газы сгорания и при необходимости несгоревшие твердые вещества вводят затем соответственно в подающий трубопровод и трубопровод для восстановительного газа. Это выравнивает возможным образом выходящие горячие фронты пламени, прежде чем они вступят в контакт с запыленным восстановительным газом и также вызовут оплавление пыли в трубопроводах.

Предпочтительно горючий газ или твердое и/или жидкое топливо сжигают вместе с кислородом и/или воздухом посредством, по меньшей мере, одной горелки, предусмотренной в реакторе с псевдоожиженным слоем. При этом газы сгорания вводят непосредственно в реактор с псевдоожиженным слоем.

Согласно другой предпочтительной форме выполнения только кислород и/или воздух вводят в реактор с псевдоожиженным слоем через горелку, преимущественно копье, и восстановительный газ сжигают непосредственно там.

При этом горелка целесообразно может быть расположена либо под образованным в реакторе псевдоожиженным слоем, на уровне псевдоожиженного слоя или под ним, за счет чего тепло может быть подведено к восстановительному газу предельно целенаправленно и особенно эффективно.

Обе названные последними альтернативы особенно предпочтительны, поскольку при этом термическая нагрузка распределительного дна ниже, а отложение твердого вещества на или в соплах, или отверстиях распределительного дна предотвращается или, по крайней мере, уменьшается.

В соответствии с предпочтительной формой выполнения способа согласно изобретению для сжигания дополнительно используют восстановительный газ, и/или отходящий газ, и/или охлаждающий газ, и/или внешний горючий газ, и/или твердое, и/или жидкое, и/или газообразное топливо на углеводородной основе. Эта форма выполнения оказывается особенно предпочтительной, когда какое-либо топливо из приведенной выше группы имеется в избытке или восстановительный газ, или отходящий газ, или охлаждающий газ требуется в преобладающей части для других целей и из-за этого имеется в распоряжении не в достаточном количестве.

К подаваемому к ступени восстановления и/или ступени подогрева восстановительному газу примешивают предпочтительно вещество, повышающее за счет, по меньшей мере, частичного превращения восстановительным газом восстанавливающую долю восстановительного газа, в частности природный газ и/или уголь. Это предотвращает мешающий процессу восстановления эффект образования настылей. Причиной этого являются направленные игольчатые выделения железа на поверхности частиц рудной мелочи, которые возникают при более высоких температурах и низком потенциале восстановления. Превращение веществ может происходить также в горелке.

Подача дополнительных топлив обеспечивает положительное влияние на установление температуры, степень окисления восстановительного газа и при необходимости повышение количества всего газа.

Далее изобретение относится к способу, в котором к подаваемому к ступени восстановления и/или ступени подогрева восстановительному газу примешивают вещество, повышающее за счет, по меньшей мере, частичного превращения восстановительным газом восстанавливающую долю восстановительного газа, в частности природный газ и/или уголь, причем сжигания не происходит.

Преимущества этого способа заключаются в упомянутом выше предотвращении эффекта образования настылей.

Изобретение более подробно поясняется ниже с помощью чертежа, причем на фиг.1-3 и 9 изображены в виде блок-схем формы выполнения способа согласно изобретению, фиг.4 и 5 - предпочтительные формы выполнения способа из фиг.2 и 3 соответственно, а фиг.6-8 - в схематичном виде увеличенный фрагмент предпочтительной формы выполнения.

На фиг.1 изображены три последовательно расположенных реактора 1-3 с псевдоожиженным слоем, причем содержащий оксид железа материал, например рудную мелочь, подают по подающему трубопроводу 4 для руды к первому реактору 1 с псевдоожиженным слоем, в котором на ступени 5 подогрева происходят подогрев рудной мелочи и возможное предварительное восстановление, а затем направляют от реактора 1 к реакторам 2, 3 по транспортирующим трубопроводам 6. В реакторе 2 на ступени 7 предварительного восстановления происходит предварительное восстановление, а в реакторе 3 на ступени 8 окончательного восстановления - окончательное восстановление рудной мелочи в губчатое железо.

Окончательно восстановленный материал, т.е. губчатое железо, направляют по транспортирующему трубопроводу 9 в плавильный газификатор 10. В плавильном газификаторе 10 в зоне 11 плавильной газификации из угля и кислородсодержащего газа получают СО- и Н2-содержащий восстановительный газ, который по подающему трубопроводу 12 вводят в реактор 3 с псевдоожиженным слоем, расположенный последним в направлении течения рудной мелочи. Способ в псевдоожиженном слое проводят при давлении ≤5 бар. Восстановительный газ в противотоке к руде направляют от реактора 3 к реакторам 2 и 1, а именно по трубопроводам 13, отводят из реактора 1 в виде отходящего газа по отводящему трубопроводу 14, а затем охлаждают и промывают в скруббере 15.

Плавильный газификатор 10 содержит подающий трубопровод 16 для твердых карбюризаторов, подающий трубопровод 17 для кислородсодержащих газов, а также при необходимости подающие трубопроводы для жидких или газообразных при комнатной температуре карбюризаторов, таких как углеводороды, а также для сгоревших добавок. В плавильном газификаторе 10 под зоной 11 плавильной газификации скапливаются жидкий чугун или жидкий стальной полуфабрикат и жидкий шлак, выпускаемые через выпускное отверстие 18.

В подающем трубопроводе 12 для восстановительного газа, идущем от плавильного газификатора 10 и входящем в реактор 3 с псевдоожиженным слоем, предусмотрено пылеуловительное устройство 19, такое как газовый циклон, причем осажденные в этом циклоне пылевые частицы подают в плавильный газификатор 10 по возвратному трубопроводу 20 с азотом в качестве транспортирующего средства и через горелку 21 с вдуванием кислорода.

От подающего трубопровода 12 для восстановительного газа отходит возвратный трубопровод 22, который снова вводит часть восстановительного газа через скруббер 23 и компрессор 24 в подающий трубопровод 12, а именно перед газовым циклоном 19, что обеспечивает регулирование температуры восстановительного газа.

В трубопроводе 13 и в подающем трубопроводе 12 для восстановительного газа в направлении его потока перед реакторами 1-3 с псевдоожиженным слоем предусмотрены горелки 25, 25', 25", к которым для частичного сжигания восстановительного газа подают кислород и/или воздух, причем горелки образованы питанием для горючего газа и кислорода и/или воздуха, а также камерой 25а, 25'а, 25"а сгорания. Эти горелки 25, 25', 25" могут быть выполнены также в виде подающих кислород и/или воздух копий, причем часть трубопровода для восстановительного газа служит камерой сгорания горелки 25. С целью подачи кислорода можно применять также кислородсодержащий газ. За счет количества подаваемого кислорода и/или воздуха сжиганием и, тем самым, температурой восстановительного газа можно управлять индивидуально в зависимости от требований ступеней восстановления или ступени подогрева, что создает для восстановления термодинамически благоприятные условия и способствует реакциям авториформинга, а также снижает термическую нагрузку на каждый реактор с псевдоожиженным слоем.

Согласно изображенному на фиг.2 варианту способа от отводящего трубопровода 14 для отходящего газа после скруббера 15 ответвляется трубопровод 26 для отходящего газа, который часть очищенного отходящего газа через компрессор 27 параллельно подает к предусмотренным в трубопроводах 13 и в подающем трубопроводе 12 для восстановительного газа горелкам 25, 25', 25", так что он сгорает там вместе с кислородом и/или воздухом и, тем самым, подводит к восстановительному газу требуемое тепло.

Изображенный на фиг.3 способ согласно изобретению отличается от изображенного на фиг.1 варианта способа тем, что подвод тепла к восстановительному газу происходит за счет сжигания части охлаждающего газа вместе с кислородом и/или воздухом, а не за счет сжигания подаваемого к реакторам с псевдоожиженным слоем восстановительного газа. Для этой цели от возвратного трубопровода 22 для газа после скруббера 23 ответвляется трубопровод 28 для охлаждающего газа, который часть охлаждающего газа транспортирует через компрессор 29 параллельно к горелкам 25, 25', 25".

На фиг.4 показана предпочтительная форма выполнения изображенного на фиг.2 варианта способа. При этом трубопровод 26 для отходящего газа входит в образованные камерами 25, 25'а, 25"а сгорания горелки 25, 25', 25", которые в противоположность фиг.2 встроены не в трубопроводы 13 и в подающий трубопровод 12 для восстановительного газа.

На фиг.5 показана аналогичная фиг.4 форма выполнения изображенного на фиг.3 способа. Предназначенную для сжигания часть охлаждающего газа вместе с кислородом и/или воздухом сжигают в отдельных камерах 25, 25'а, 25"а сгорания, образующих горелки 25, 25', 25", а затем вводят в трубопроводы 13 и в подающий трубопровод 12 для восстановительного газа.

Согласно еще одной предпочтительной форме выполнения изобретения сжигание используемого горючего газа (восстановительный газ, отходящий газ или охлаждающий газ) происходит вместе с кислородом и/или воздухом посредством соответствующей реактору с псевдоожиженным слоем горелки.

Схематично изображенный на фиг.6 реактор 30 с псевдоожиженным слоем имеет разделенное на три зоны внутреннее пространство 31, к которому внизу ведет газоподающий трубопровод 32 и от которого на верхнем конце идет трубопровод 33 для отходящего газа. Самая нижняя зона 34 отделена от средней зоны 35 распределительным дном 37, которое равномерно распределяет протекающий снизу вверх через внутреннее пространство 31 реактора 30 восстановительный газ по всему сечению реактора 30, создавая за счет этого единый псевдоожиженный слой из частиц рудной мелочи. Граница между образованной псевдоожиженным слоем средней зоной 35 и самой верхней зоной 36, так называемым «фрибордом», менее резка, чем между обеими нижними зонами. Во фриборде происходит успокоение газового пространства, что уменьшает вынос частиц руды из реактора 30. В самой нижней зоне 34 под распределительным дном 37 расположена горелка 38, к которой ведут кислородо- и/или воздухопровод (не показан), а также трубопровод для восстановительного газа, отходящего газа, охлаждающего газа, внешнего горючего газа и/или твердых, и/или жидких топлив. Может быть предусмотрен также только один трубопровод для кислорода и/или воздуха, причем сжигание восстановительного газа происходит непосредственно в реакторе. Горячие газы сгорания подводят к протекающему в реакторе 30 восстановительному газу тепло или приводят к реакциям авториформинга. Предпочтительно к восстановительному газу через горелку 38 могут быть примешаны также повышающие восстановительную долю восстановительного газа вещества, такие как природный газ и/или уголь.

В изображенной на фиг.7 форме выполнения горелка 38 расположена в средней зоне 35, в псевдоожиженном слое. Эта форма выполнения особенно предпочтительна тогда, когда восстановительный газ особенно запылен, поскольку при этом отсутствует опасность смещения распределительного дна 37 оплавляющейся пылью.

На фиг.8 изображена предпочтительная форма выполнения, у которой горелка 38 расположена над псевдоожиженным слоем 35, т.е. во фриборде 36. При этом теплопередача происходит посредством излучения и/или конвекции вынесенными из псевдоожиженного слоя частицами.

Изображенный на фиг.9 вариант способа содержит, в основном, все признаки изображенной на фиг.2 установки. В противоположность фиг.2 к предусмотренным в трубопроводах 13 и в подающем трубопроводе 12 для восстановительного газа горелкам 25, 25', 25" через трубопровод 26 и компрессор 27 подают, однако, не отходящий газ, а внешний горючий газ и/или твердое, и/или жидкое топливо, который или которое транспортируют по трубопроводу 39 к горелкам 25, 25', 25".

Изобретение не ограничено изображенными на чертежах примерами выполнения и может быть модифицировано в различных отношениях. Например, можно выбрать число реакторов с псевдоожиженным слоем в зависимости от требований. Точно также восстановительный газ может быть получен различными известными способами.

1. Способ восстановления газом оксидсодержащих руд в виде частиц, в частности содержащего оксид железа материала, с использованием псевдоожиженного слоя при давлении меньше 5 бар, в котором руду нагревают с помощью полученного из угля восстановительного газа в выполненном в виде ступени подогрева реакторе с псевдоожиженным слоем, затем восстанавливают в губчатое железо, по меньшей мере, в одном выполненном в виде ступени восстановления реакторе с псевдоожиженным слоем и восстановительный газ по подающему трубопроводу и трубопроводу во встречном направлении подаваемого от ступени к ступени восстанавливаемого материала направляют от ступени восстановления к ступени подогрева и после очистки удаляют в виде отходящего газа, отличающийся тем, что к восстановительному газу, подаваемому к ступени подогрева или к ступеням восстановления и подогрева, подводят тепло за счет сжигания части отходящего газа вместе с кислородом и/или воздухом.

2. Способ по п.1, отличающийся тем, что сжигаемую часть восстановительного газа или отходящего газа перед сжиганием подвергают процессу промывки.

3. Способ по п.1, отличающийся тем, что сжигание осуществляют в горелке, предусмотренной в подающем трубопроводе и трубопроводе для восстановительного газа.

4. Способ по п.1, отличающийся тем, что сжигание осуществляют в отдельной от подающего трубопровода и трубопровода для восстановительного газа камере сгорания, причем газы сгорания и при необходимости несгоревшие твердые вещества вводят затем в подающий трубопровод и трубопровод для восстановительного газа.

5. Способ по п.1, отличающийся тем, что сжигание осуществляют посредством, по меньшей мере, одной, соответствующей реактору с псевдоожиженным слоем горелки, причем газы сгорания вводят непосредственно в реактор с псевдоожиженным слоем.

6. Способ по п.1, отличающийся тем, что в дополнение к соответственно используемому газу для сжигания используют далее охлаждающий газ, используемый для охлаждения восстановительного газа, и/или внешний горючий газ, и/или твердое, и/или жидкое, и/или газообразное топливо на углеводородной основе.

7. Способ по п.1, отличающийся тем, что к подаваемому к ступени восстановления и/или ступени подогрева восстановительному газу примешивают вещество, повышающее за счет, по меньшей мере, частичного превращения восстановительным газом восстанавливающую долю восстановительного газа, в частности природный газ и/или уголь.

8. Способ восстановления газом оксидсодержащих руд в виде частиц, в частности содержащего оксид железа материала, с использованием псевдоожиженного слоя при давлении <5 бар, причем руду с помощью полученного из угля восстановительного газа нагревают в выполненном в виде ступени подогрева реакторе с псевдоожиженным слоем, при необходимости также предварительно восстанавливают, затем, по меньшей мере, в одном выполненном в виде ступени восстановления реакторе с псевдоожиженным слоем восстанавливают в губчатое железо и восстановительный газ по подающему трубопроводу и трубопроводу во встречном направлении подаваемого от ступени к ступени восстанавливаемого материала направляют от ступени восстановления к ступени подогрева и после очистки удаляют в виде отходящего газа, отличающийся тем, что к восстановительному газу, подаваемому к ступени восстановления и/или к ступени подогрева, подводят тепло, а именно за счет сжигания части охлаждающего газа, используемого для охлаждения введенного в зону окончательного восстановления восстановительного газа, вместе с кислородом и/или воздухом.

9. Способ по п.8, отличающийся тем, что сжигаемую часть восстановительного газа или охлаждающего газа перед сжиганием подвергают процессу промывки.

10. Способ по п.8, отличающийся тем, что сжигание осуществляют в горелке, предусмотренной в подающем трубопроводе и трубопроводе для восстановительного газа.

11. Способ по п.8, отличающийся тем, что сжигание осуществляют в отдельной от подающего трубопровода и трубопровода для восстановительного газа камере сгорания, причем газы сгорания и при необходимости несгоревшие твердые вещества вводят затем в подающий трубопровод и трубопровод для восстановительного газа.

12. Способ по п.8, отличающийся тем, что сжигание осуществляют посредством, по меньшей мере, одной, соответствующей реактору с псевдоожиженным слоем горелки, причем газы сгорания вводят непосредственно в реактор с псевдоожиженным слоем.

13. Способ по п.8, отличающийся тем, что в дополнение к соответственно используемому газу для сжигания используют далее отходящий газ, и/или внешний горючий газ, и/или твердое, и/или жидкое, и/или газообразное топливо на углеводородной основе.

14. Способ по п.8, отличающийся тем, что к подаваемому к ступени восстановления и/или ступени подогрева восстановительному газу примешивают вещество, повышающее за счет, по меньшей мере, частичного превращения восстановительным газом восстанавливающую долю восстановительного газа, в частности природный газ и/или уголь.

15. Способ восстановления газом оксидсодержащих руд в виде частиц, в частности содержащего оксид железа материала, с использованием псевдоожиженного слоя при давлении <5 бар, причем руду с помощью полученного из угля восстановительного газа нагревают в выполненном в виде ступени подогрева реакторе с псевдоожиженным слоем, при необходимости также предварительно восстанавливают, затем, по меньшей мере, в одном выполненном в виде ступени восстановления реакторе с псевдоожиженным слоем восстанавливают в губчатое железо и восстановительный газ по подающему трубопроводу и трубопроводу во встречном направлении подаваемого от ступени к ступени восстанавливаемого материала направляют от ступени восстановления к ступени подогрева и после очистки удаляют в виде отходящего газа, отличающийся тем, что к восстановительному газу, подаваемому к ступени восстановления и/или к ступени подогрева, подводят тепло, а именно за счет сжигания внешнего горючего газа, и/или твердого, и/или жидкого топлива вместе с кислородом и/или воздухом.

16. Способ по п.15, отличающийся тем, что сжигание осуществляют в горелке, предусмотренной в подающем трубопроводе и трубопроводе для восстановительного газа.

17. Способ по п.15, отличающийся тем, что сжигание осуществляют в отдельной от подающего трубопровода и трубопровода для восстановительного газа камере сгорания, причем газы сгорания и при необходимости несгоревшие твердые вещества вводят затем в подающий трубопровод и трубопровод для восстановительного газа.

18. Способ по п.15, отличающийся тем, что сжигание осуществляют посредством, по меньшей мере, одной, соответствующей реактору с псевдоожиженным слоем горелки, причем газы сгорания вводят непосредственно в реактор с псевдоожиженным слоем.

19. Способ по п.15, отличающийся тем, что в дополнение к соответственно используемому газу для сжигания используют далее отходящий газ, и/или охлаждающий газ, и/или внешний горючий газ, и/или твердое, и/или жидкое, и/или газообразное топливо на углеводородной основе.

20. Способ по п.15, отличающийся тем, что к подаваемому к ступени восстановления и/или ступени подогрева восстановительному газу примешивают вещество, повышающее за счет, по меньшей мере, частичного превращения восстановительным газом восстанавливающую долю восстановительного газа, в частности природный газ и/или уголь.

21. Установка для восстановления газом оксидсодержащих руд в виде частиц, в частности содержащего оксид железа материала, содержащая, по меньшей мере, два последовательно расположенных реактора с псевдоожиженным слоем для восстановления газом оксидсодержащих руд в виде частиц посредством полученного из угля СО- и Н2-содержащего восстановительного газа, трубопровод для подачи восстановительного газа к последнему, если смотреть в направлении течения оксидсодержащего материала, реактору с псевдоожиженным слоем, трубопровод для отвода израсходованного восстановительного газа в виде отходящего газа из первого, если смотреть в направлении течения оксидсодержащего материала, реактора с псевдоожиженным слоем, ответвляющийся от подающего трубопровода для восстановительного газа возвратный газопровод для охлаждающего газа, который через скруббер снова входит в подающий трубопровод для восстановительного газа, и трубопровод для восстановительного газа, предусмотренный для ввода восстановительного газа от реактора с псевдоожиженным слоем в предвключенный ему реактор с псевдоожиженным слоем, отличающаяся тем, что установка связана трубопроводами, по меньшей мере, с одной горелкой с трубопроводом для отходящего газа, подаваемого к ступени подогрева или к ступеням восстановления и подогрева, и/или охлаждающего газа, используемого для охлаждения восстановительного газа, и/или внешнего горючего газа, и/или твердого, и/или жидкого топлива, и/или кислорода, и/или воздуха для сжигания части восстановительного газа, отходящего газа или охлаждающего газа, внешнего горючего газа или твердого или жидкого топлива вместе с кислородом и/или воздухом.

22. Установка по п.21, отличающаяся тем, что в отводящем трубопроводе для отходящего газа расположен скруббер, и промытый отходящий газ подают по трубопроводу для отходящего газа к горелке.

23. Установка по п.21 или 22, отличающаяся тем, что горелка со своей камерой сгорания расположена непосредственно в подающем трубопроводе для восстановительного газа и в трубопроводе для восстановительного газа.

24. Установка по п.21 или 22, отличающаяся тем, что горелка содержит отдельную от подающего трубопровода для восстановительного газа и трубопровода для восстановительного газа камеру сгорания, которая трубопроводом связана с подающим трубопроводом для восстановительного газа и трубопроводом для восстановительного газа.

25. Установка по п.21 или 22, отличающаяся тем, что горелка расположена в реакторе с псевдоожиженным слоем, а именно либо под псевдоожиженным слоем, на уровне псевдоожиженного слоя, либо над псевдоожиженным слоем.



 

Похожие патенты:

Изобретение относится к производству железа или стали, в частности, в подвижной подовой плавильной печи (FHM). .

Изобретение относится к области металлургии. .

Изобретение относится к металлургии, а именно к способу выплавки металла путем восстановления содержащего окись металла материала в реакторе с псевдоожиженным слоем, а также устройству для его осуществления.

Изобретение относится к области металлургии, в частности к способу и устройству для получения чугуна или жидких стальных продуктов в доменной печи. .

Изобретение относится к рециркуляции пыли и шлама, полученных на металлургических заводах, на которых осуществляется процесс получения чугуна с использованием некоксующегося угля и железорудной мелочи.

Изобретение относится к получению карбида железа с высоким содержанием углерода прямым восстановлением из окиси железа. .

Изобретение относится к рециркуляции побочного шлама в системе производства чугуна для производства жидкого чугуна с использованием некоксующегося угля и рудной мелочи без дополнительной обработки.

Изобретение относится к производству передельного чугуна. .

Изобретение относится к рециркуляции пыли и шлама, образующихся в процессе производства и обработки черных металлов. .

Изобретение относится к установке восстановительной плавки, в особенности к реактору с кипящим слоем. .

Изобретение относится к черной металлургии, в частности процессам прямого получения железа и производству ферроникеля

Изобретение относится к получению металлов из оксидов металлов с использованием углеродсодержащего материла

Изобретение относится к области металлургии, в частности к процессам металлизации и электросталеплавильному производству

Изобретение относится к области металлургии, а именно к способам восстановительного обжига окисленных железных руд и селективного извлечения из них легирующих элементов, например никеля, и к конструкции используемой при этом установки

Изобретение относится к области металлургии, в частности к процессам металлизации и электросталеплавильному производству

Изобретение относится к получению расплавленного железа

Изобретение относится к способу и устройству для непрерывного производства стали

Изобретение относится к области металлургии и может быть использовано для получения восстановлением железа в противотоке с продуктами конверсии метана и прямого получения железоуглеродистых сплавов с помощью плазменной технологии
Наверх