Нержавеющая сталь для производства труб и способ производства труб из нержавеющей стали

Изобретение относится к черной металлургии, в частности к нержавеющим сталям, и может быть использовано при производстве труб повышенной коррозионной стойкости различного назначения, например, для строительства трубопроводов, транспортирующих агрессивные в коррозионном отношении среды. Предложена нержавеющая сталь для производства труб, содержащая углерод, кремний, марганец, хром, никель, молибден, железо и неизбежные примеси. Способ производства труб из нержавеющей стали включает выплавку стали, ее разливку в слитки, деформацию слитков в трубные заготовки, горячее прессование, последующую термообработку. После разливки стали и деформации слитков проводят прессование трубных заготовок в трубы и последующее ускоренное охлаждение прессованных труб в воде, а термообработку проводят путем аустенизации при температуре 1030-1050°С с выдержкой в течение 1 мин/мм толщины стенки трубы и охлаждением на воздухе. Технический результат - создание новой марки нержавеющей стали для производства труб, в том числе и труб "большого" диаметра (⊘ 159-219 мм), имеющей сбалансированный химический и фазовый состав и обладающей повышенным уровнем механических свойств. 2 н.п. ф-лы, 2 табл., 2 ил.

 

Изобретение относится к черной металлургии, в частности к нержавеющим сталям, и может быть использовано при производстве труб повышенной коррозионной стойкости различного назначения в машиностроительных отраслей промышленности, например для строительства трубопроводов, транспортирующих агрессивные в коррозионном отношении среды (водные среды, содержащие ионы хлора, сероводород, углекислый газ и т.д.). Обычные стали в таких условиях могут быть подвержены общей и локальной коррозии, коррозионному растрескиванию под напряжением, коррозионной эрозии, что в свою очередь приведет к повреждениям трубопровода.

Следует отметить, что на коррозионную стойкость стали и ее прочностные свойства влияют химический состав, параметры микроструктуры стали, количество, состав и свойства неметаллических включений, а способ производства стали должен предусматривать минимальное легирование в процессе выплавки, обеспечивая высокую степень чистоты по неметаллическим включениям.

Из уровня техники известна мартенситная нержавеющая сталь для производства труб (см. ЕР 0178338, С 22 С 38/18, 23.04.1986). Сталь содержит компоненты при следующем их соотношении, мас.%:

Углеродне более 0,3
Кремнийне более 1,0
Марганецне более 2,0
Хром11,0-14,0
Алюминий0,005-0,10
Азотне более 0,10
Фосфорне более 0,20
Серане более 0,003
Железоостальное

один или более элементов из группы:

Никельне менее 3,5
Медьне менее 2,0
Молибденне менее 2,5
Ниобийне менее 0,10
Ванадий3-10

Также из уровня техники известен способ производства стали для труб с повышенной коррозионной стойкостью, включающий выплавку стали, ее разливку, ускоренное охлаждение полученной заготовки в воде и ее термообработку (см. RU 2184155 С2, C 21 D 8/10, 27.06.2002).

Наиболее близким аналогом к заявленной группе изобретений по совокупности существенных признаков и назначению является SU 1686026 А1, С 22 С 38/48, 23.10.1991, из которого известна конструкционная нержавеющая сталь, используемая для изготовления сварных труб трубопроводов высокого давления, и способ производства труб из нержавеющей стали. Рассматриваемая сталь данного состава и полученная данным способом обладает повышенной прочностью, пластичностью и стойкостью против межкристаллитной коррозии сварных соединений. Сталь содержит компоненты при следующем их соотношении, мас.%:

Углерод0,05-0,08
Хром16,5-17,5
Никель4,5-5,2
Марганец1,0-1,5
Кремний1,5-1,8
Молибден1,0-3,0
Ниобий0,04-0,16
Азот0,15-0,19
Железоостальное

Способ включает выплавку стали, ее разливку в слитки, деформацию и последующую термообработку.

Недостатком стали, раскрытой в наиболее близком аналоге, является пониженные механические свойства, в частности предел текучести при температуре 350°С. При этом качество поверхности труб было низким (Rz=80 мкм и грубее), поэтому требовалась дополнительная операция "овализации" труб - холодная деформация в правильной машине - с последующим шлифованием поверхности с целью удаления следов овализации, что, естественно, приводит к дополнительным трудозатратам.

Техническим результатом изобретения является создание новой марки нержавеющей стали для производства труб, в том числе и труб "большого" диаметра (⊘ 159-219 мм), имеющей сбалансированный химический и фазовый состав и обладающей повышенным уровнем механических свойств, в частности, повышенным уровнем значений предела текучести (σ0,2) при температуре 350°С, а также снижение трудозатрат при производстве труб из заявленной стали за счет исключения дополнительных операций по обработке труб.

Технический результат достигается тем, что предложена нержавеющая сталь для производства труб, содержащая углерод, кремний, марганец, хром, никель, молибден, железо и неизбежные примеси, при этом она дополнительно содержит алюминий, титан и бор, при следующем соотношении компонентов, мас.%:

углерод0,03-0,1
кремнийне более 0,8
марганец1,0-2,0
хром17,0-19,0
никель9,0-11,0
молибденне более 0,5
алюминийне более 0,05
титан0,015-0,80
бор0,002-0,005
Fe и неизбежные примеси остальное,

при этом отношение титана к углероду в стали составляет 7-10,

а также способ производства труб из нержавеющей стали, включающий выплавку стали, ее разливку в слитки, деформацию слитков в трубную заготовку, горячее прессование, последующую термообработку, при этом выплавляют нержавеющую сталь, после разливки стали и деформации слитка проводят прессование трубной заготовки в трубы и последующее ускоренное охлаждение прессованных труб в воде, а термообработку проводят путем аустенизации при температуре 1030-1050°С с выдержкой в течение 1 мин/мм толщины стенки трубы и охлаждением на воздухе.

При этом неизбежными и нежелательными примесями в стали являются сера, фосфор и медь.

Микролегирование стали бором (0,002-0,005 мас.%) способствует измельчению аустенитного зерна за счет вытеснения избыточных фаз, в том числе карбидных, с границ в тело зерна, что сказалось на повышении прочностных свойств стали на 25-30% при 350°С. Это позволило получить требуемый комплекс физико-механических свойств труб, в том числе σ0,2 при 350°С, что исключило необходимость проведения дополнительных операций по овализации и последующей шлифовки труб.

Уменьшение содержания кремния в стали и введение алюминия в предлагаемых пределах позволит повысить прочностные свойства и свариваемость без снижения коррозионной стойкости за счет торможения роста аустенитного зерна.

Содержание молибдена снижено за счет дополнительного легирования титаном, который так же, как и молибден, является карбидообразующим элементом и имеет по сравнению с молибденом большее сродство к углероду.

Соотношение титана к углероду в стали выбрано в диапазоне 7-10, поскольку именно при таком соотношении титан позволяет эффективно связывать углерод и азот, являющийся примесью. При этом увеличивается усвоение титана расплавом стали. Изменение этого соотношения приведет к появлению оксидов титана и увеличению загрязненности стали неметаллическими включениями.

Выбранный вид термообработки, а именно температурный интервал нагрева для аустенизации, связан с предотвращением возможности перегрева наследственно мелкозернистой структуры, что приведет к снижению всех механических свойств стали. Выдержка в течение 1 мин на мм толщины стенки трубы дает возможность в полной мере пройти процессу перераспределения легирующих компонентов и процессу наследования исходной структуры.

Пример. Была проведена серия лабораторных плавок и исследований структуры стали и ее механических свойств: плавка стали с содержанием бора 0,002, 0,003 и 0,005 мас.%, последующая разливка в слитки 15 кг, их деформация прессованием в трубы и термическая обработка по заданным режимам. После прессования проводили ускоренное охлаждение труб в воду для фиксации структуры и не допущения роста аустенитного зерна.

Проведенный химический анализ показал содержания легирующих компонентов и примесей, которые представлены в табл.1 Механические свойства представлены в табл.2. Микроструктуры полученной стали после термической обработки представлена на фиг.1 и 2.

Таблица 1

Химический состав нержавеющей стали для производства труб, мас.%
СSiMnCrNiМоAlTiВПримеси: P, S, Cu
10,0371,51,3716,95,51,0---0,020; 0,005; 0,28
20,0340,521,3616,89,40,500,050,300,0020,021; 0,005; 0,28
30,0360,521,3616,959,40,500,050,250,0040,021; 0,005; 0,28
40,0330,511,3516,859,360,500,050,270,0050,020; 0,005; 0,27

Где плавка №1 соответствует стали из наиболее близкого аналога, плавки №2, 3, 4 соответствуют составу заявляемой стали с содержанием бора соответственно 0,002, 0,003 и 0,005 мас.%.

Таблица 2

Механические свойства при 20 и 350°С, термообработка 1050°С
σв, МПаσ0,2, МПаδ5, %ψ, %№ зерна аустенита
20350203502035020350
16604303902675631-736-7
26734484373275028-718-9
36854384203305336-739-10
46914674403565827-708-9

Измерения проводились и рассчитывались, как среднее из 5 полученных значений.

Размер аустенитного зерна, охарактеризованный номером (баллом), был определен по стандартной шкале микроструктур (ГОСТ 5639-65). Полученные данные показали, что аустенитное зерно является мелкозернистым. Следовательно, при использовании предложенной марки стали и при проведении вышеописанной термической обработки размер зерна уменьшается, что положительно сказывается на механических свойствах стали.

Пример. Выплавляют сталь в электропечи с разливкой при т-ре 1560°С, затем осуществляют разливку ее в слитки, деформация слитков в трубную заготовку диаметром 150 мм осуществляется при температуре 1120°С. Обдирка трубной заготовки осуществляется до шероховатости RZ - 80 мкм; далее горячее прессование с усилием 2200 т трубной заготовки на прессе в трубу, термообработка трубы методом закалки от 1030°С с охлаждением в воде с последующей отделкой.

Таким образом, использование предложенной стали существенно повысит прочностные характеристики, в том числе предел текучести при 350°С, и снизит трудозатраты при производстве труб.

1. Нержавеющая сталь для производства труб, содержащая углерод, кремний, марганец, хром, никель, молибден, железо и неизбежные примеси, отличающаяся тем, что она дополнительно содержит алюминий, титан и бор, при следующем соотношении компонентов, мас.%:

Углерод0,03-0,1
КремнийНе более 0,8
Марганец1,0-2,0
Хром17,0-19,0
Никель9,0-11,0
МолибденНе более 0,5
АлюминийНе более 0,05
Титан0,015-0,80
Бор0,002-0,005
Железо и неизбежные примесиОстальное

при этом отношение титана к углероду в стали составляет 7-10.

2. Способ производства труб из нержавеющей стали, включающий выплавку стали, ее разливку в слитки, деформацию слитков в трубные заготовки, горячее прессование, последующую термообработку, при этом выплавляют нержавеющую сталь по п.1, после разливки стали и деформации слитков проводят прессование трубных заготовок в трубы и последующее ускоренное охлаждение прессованных труб в воде, а термообработку проводят путем аустенизации при температуре 1030-1050°С с выдержкой в течение 1 мин/мм толщины стенки трубы и охлаждением на воздухе.



 

Похожие патенты:
Изобретение относится к черной металлургии, а именно к сталям, предназначенным для изготовления тяжело нагруженных изделий, в частности для автомобильных шестерен, упрочняемых цементацией.

Изобретение относится к получению материала, применяемого в стекольной промышленности, в частности в качестве формующего материала для изготовления машинопрессованных стёкол.

Изобретение относится к металлургии, в частности к получению нержавеющей ферритной стали, пригодной для обработки штамповкой с большой степенью деформации, устойчивой к возникновению волнистости.

Изобретение относится к области металлургии, к составам коррозионностойких высокопрочных аустенитных сталей и может быть использовано при производстве крепежа, листовых и трубных деталей, арматуры и других высоконагруженных деталей нефтегазодобывающего оборудования, работающего при низких температурах в агрессивных средах, в том числе с высоким содержанием сероводорода и двуокиси углерода.

Сталь // 2209845
Изобретение относится к черной металлургии, в частности к изысканию жаростойких сталей, работающих при температуре до 700oС, используемой, например, для изготовления колосников агломашин или скоб подвески свода мартеновской печи и т.п.

Изобретение относится к металлургии, преимущественно к производству стали и композиционных материалов на основе железа. .

Изобретение относится к сталям, составы которых пригодны для производства реакторов, труб, печей или их элементов, используемых в нефтехимических процессах. .

Изобретение относится к металлургии, а именно к производству сталей повышенной и высокий обрабатываемости резанием, в частности легированных автоматных сталей, используемых в машиностроении.

Изобретение относится к металлургии, в частности к разработке легированной автоматной стали, используемой в машиностроении. .

Изобретение относится к трубопрокатному производству, а именно к способу изготовления технологического инструмента, и может быть использовано при изготовлении дорнов пилигримовых станов для прокатки горячекатаных труб большого и среднего диаметров (273-550 мм).
Изобретение относится к области металлургии, конкретнее к технологии деформационно-термической обработки железоуглеродистых сплавов и может быть использовано при производстве горячедеформированных бесшовных чугунных труб.

Изобретение относится к области металлургии, в частности к производству сварных труб для нефте-, газо- и продуктопроводов и других аналогичных конструкций (резервуары, сосуды давления), работающих в сложных геологических, климатических условиях и при наличии агрессивных коррозионных сред.

Изобретение относится к трубопрокатному производству, а именно к способу изготовления дорнов пилигримовых станов для прокатки горячекатаных труб большого и среднего диаметров (273-550 мм).
Изобретение относится к области металлургии, в частности технологии упрочнения труб нефтяного сортамента из углеродистых и микролегированных Nb, V, Mo и Cr сталей непосредственно в процессе горячей деформации.

Изобретение относится к черной металлургии, а именно к производству горячекатаного стального проката стали и изделий из нее. .

Изобретение относится к обработке металлов давлением и может быть использовано при получении трубных заготовок для многостадийной холодной прокатки трубных конструкционных элементов активной зоны атомных реакторов.

Изобретение относится к изготовлению высокопрочных, стойких к сульфидному растрескиванию, хладостойких и коррозионностойких труб нефтяного сортамента из углеродистых и легированных сильными карбидообразующими элементами (Cr, Мо, V, Nb и др.) сталей.

Изобретение относится к способам производства ружейных стволов и может применяться для изготовления всех типов огнестрельного оружия. .
Изобретение относится к металлообработке и может быть использовано в различных областях машиностроения, а именно, для обработки различных закаленных деталей с чередующимися выступами и впадинами.
Наверх