Способ получения гексафторфосфата пиридиния

Изобретение относится к технологии получения гексафторфосфата пиридиния, являющегося удобным полупродуктом для синтеза гексафторфосфата лития - ионогенного компонента электролитов литий-ионных химических источников тока. Описывается способ получения гексафторфосфата пиридиния путем взаимодействия пятихлористого фосфора с фторирующим агентом, при этом в качестве фторирующего агента используют гидродифторид аммония с последующей обработкой полученного промежуточного продукта раствором соли пиридина. Технический результат - изобретение не требует использования опасного и неудобного в работе жидкого безводного фтористого водорода, на стадиях процесса отсутствуют экстремальные температурные параметры. 3 з.п. ф-лы.

 

Изобретение относится к технологии получения солей гексафторфосфорной кислоты, в частности гексафторфосфата пиридиния, являющегося удобным соединением для синтеза других солей этой кислоты - гексафторфосфатов, в том числе гексафторфосфата лития. Наиболее важное практические применение гексафторфосфата лития - это использование в качестве компонента неводных электролитов для литиевых химических источников тока.

Соли гексафторфосфорной кислоты HPF6 применяются в качестве катализаторов полимеризации, при очистке и обработке металлов, в лабораторной практике.

Известно несколько хорошо изученных способов получения гексафторфосфата лития, например взаимодействие пентафторида фосфора с фтористым литием в жидком фтористом водороде [1, 2]. Подобные процессы сложны и дороги для практического использования. Опубликованы варианты обменных способов получения гексафторфосфата лития из соответствующей пиридиниевой соли [3, 4]. Гексафторфосфат пиридиния - термически устойчивое, малогигроскопичное соединение, которое может быть легко очищено до высоких степеней содержания основного вещества (больше 99,5 мас.%) обычной перекристаллизацией из воды и низших спиртов [3]. Это делает указанную соль удобным предшественником гексафторфосфата лития при условии ее доступности. Кроме того, из гексафторфосфата пиридиния могут быть получены при необходимости любые другие гексафторфосфорные соли [5].

Известно несколько способов получения гексафторфосфата пиридиния.

Так, в патенте [3] предложен способ получения гексафторфосфата пиридиния путем нейтрализации технической гексафторфосфорной кислоты (65%-ный водный раствор) стехиометрическим количеством пиридина под контролем электропроводности реакционной массы. Способ прост в осуществлении, однако для этого требуется иметь производство исходной гексафторфосфорной кислоты, получаемой по достаточно сложной технологии (взаимодействием пятиокиси фосфора с жидким безводньм фтористым водородом).

По другому опубликованному способу синтеза этой пиридиниевой соли [5] галогениды кислот фосфора (PCl5, PBr5, POCl3, POBr3, PSCl3) фторируют жидким комплексом пиридина с фтористым водородом - полигидрофторидом пиридиния состава C5H5NH+F-·1,7HF. При этом исходный полигидрофторид получают реакцией пиридина с жидким безводным фтористым водородом при температуре минус 80°С, что представляет известные технологические трудности и удорожает процесс. Данный способ получения гексафторфосфата пиридиния по части используемого сырья и достигаемому результату принят нами за прототип.

Целью настоящего изобретения является получение соли С5Н5NH+PF6- способом, исключающим использование жидкого безводного фтористого водорода, опасного в применении и создающего большие технологические трудности при работе с ним, а также исключение экстремальных параметров процесса.

Указанная цель достигается следующим образом. На первой стадии проводится взаимодействие раствора пятихлористого фосфора в 1,1,2,2-тетрахлорэтане с добавляемым порционно твердым порошкообразным гидродифторидом аммония. Реакция осуществляется при стехиометрическом соотношении компонентов в соответствии с уравнением:

Реакция проводится при температуре 60÷100°С в течение примерно 30 минут при перемешивании реакционной массы. Использование растворителя и постепенное дозирование гидродифторида аммония позволяет легко поддерживать изотермический режим проведения процесса. Понижение температуры реакции по сравнению с оптимальной ведет к увеличению времени взаимодействия, а повышение - к нежелательному возрастанию доли побочных процессов, снижающих выход гексафторфосфата.

Применение отличного от стехиометрического (3:1) соотношения реагентов нежелательно, так как приводит к уменьшению выхода и производительности и сильному загрязнению получающейся смеси солей исходными соединениями.

Получающаяся в результате реакции (1) смесь солей примерного состава (NH4PF6+2NH4Cl) нерастворима в реакционной среде, практически полностью осаждается и отделяется фильтрацией (растворитель возвращается на повторное использование). Выход гексафторфосфата аммония по реакции (1) при данных условиях ее проведения составляет 75% от теоретического в расчете на исходный пятихлористый фосфор.

Далее смесь солей (NH4PF6+2NH4Cl) высушивается, растворяется в минимальном количестве воды и обрабатывается при перемешивании концентрированным водным раствором хлорида пиридиния при комнатной или пониженной температуре. Моментально происходит образование и выпадение осадка малорастворимого в воде гексафторфосфата пиридиния в соответствии с уравнением:

В реакции (2) используется стехиометрическое соотношение реагентов; количество растворителя (воды) должно быть минимальным для уменьшения потерь гексафторфосфата пиридиния с маточником. При отсутствии готового хлорида пиридиния его получают смешением (при охлаждении) пиридина с концентрированной соляной кислотой, взятых в эквимольном соотношении. Хлористая соль пиридина выбрана вследствие дешевизны соляной кислоты и для упрощения состава образующегося отхода, который при ее использовании представляет собой водный раствор хлористого аммония и может быть утилизирован.

Осадок гексафторфосфата пиридиния далее отфильтровывают, тщательно отжимая жидкую фазу, и высушивают на воздухе при температуре 110÷115°C до постоянной массы. Получают продукт с содержанием основного вещества 91-92 мас.%; затем соль перекристаллизовывают обычным образом из дистиллированной воды (на 1 г соли - 2,5 мл воды) и получают продукт с содержанием основного вещества 96-97 мас.% и общим выходом (в расчете на PCl5) примерно 65% от теоретического.

В случае необходимости для повышения качества получаемой соли ее перекристаллизовывают еще раз из воды, метилового или этилового спирта, получая после высушивания гексафторфосфат пиридиния с содержанием основного вещества больше 99,5 мас.% (определено гравиметрически по осаждению аниона PF6- с нитроном).

Предлагаемый способ получения гексафторфосфата пиридиния прост в осуществлении, не требует использования жидкого фтористого водорода и экстремальных температурных параметров процесса.

Предмет изобретения поясняется нижеследующими примерами его исполнения.

Пример 1.

В тефлоновый реактор объемом 200 мл, снабженный тефлоновой мешалкой, термометром в пластиковом кожухе и стеклянным обратным холодильником с хлоркальциевой трубкой, загружается 20,8 г (0,1 моль) пятихлористого фосфора и заливается 100-120 мл осушенного простой перегонкой 1,1,2,2-тетрахлорэтана. Происходит полное растворение пятихлористого фосфора. Затем при перемешивании и температуре 60÷100°С к раствору небольшими порциями присыпается порошок гидродифторида аммония (17,1 г; 0,3 моль) из приемника, присоединенного к свободному горлу реактора посредством широкой резиновой трубки. Отмечается выделение газа (HCl) и повышение температуры в реакторе; тепло реакции отводилось с помощью водяной бани.

После прибавления всего гидродифторида аммония реакционная масса выдерживалась еще 0,5 часа при перемешивании и вышеуказанной температуре, затем охлаждалась до комнатной температуры. Твердая фаза отделялась от жидкости на фильтре и высушивалась в вакууме при температуре примерно 50°С.

Получено 20,9 г смеси солей, содержащей по данным анализа 56,3% NH4PF6, 42,0% NH4Cl, 1,7% NH4F и остаточные количества растворителя. Выход NH4PF6 72% от теоретического в расчете на исходный пятихлористый фосфор.

Пример 2.

В стеклянный химический стакан наливают 100 мл концентрированной соляной кислоты (плотностью 1,18; содержание HCl 36,2 мас.%), помещают его в холодную баню и при перемешивании стеклянной палочкой медленно приливают 95 мл (92,8 г) пиридина, не допуская повышения температуры в стакане более 35÷40°С. Соотношение реагентов - стехиометрическое. После прибавления пиридина раствор охлаждают до комнатной температуры; получают 210,8 г раствора хлорида пиридиния с концентрацией 64,3 мас.% (1,17 моля соли).

Взвешивают в отдельном химическом стакане 338,7 г смеси солей, полученной, как указано в примере 1, и при перемешивании растворяют ее в минимальном количестве дистиллированной воды (примерно 500 мл). Как правило, получается бесцветный прозрачный раствор; при наличии небольшого, не растворяющегося при данном соотношении фаз осадка или мути, раствор фильтруют.

Быстро смешивают оба раствора при интенсивном перемешивании. Моментально выпадает осадок гексафторфосфата пиридиния. Смесь выдерживают 5-10 минут при перемешивании для завершения процесса. Отфильтровывают осадок и отжимают его на фильтре под вакуумом для возможно более полного удаления маточного раствора. Осадок высушивают в фарфоровой чашке на плитке при температуре 110÷115°С до постоянной массы. Получают 240 г гексафторфосфата пиридиния с содержанием основного вещества 91-92% (по нитроновому методу). Основными примесями в полученной таким образом соли являются C5H5NH+Cl- примерно 6÷8 мас.%; NH4Cl примерно 0,3 мас.% и NH4F примерно 0,15 мас.%.

Соль перекристаллизовывают далее обычным образом из дистиллированной воды (на 1 г соли - 2,5 мл воды), сушат и получают 196 г продукта с содержанием основного вещества 97 мас.%.

Общий выход очищенного гексафторфосфата пиридиния составляет примерно 65% в расчете на исходный пятихлористый фосфор; дополнительное количество соли может быть получено при упаривании маточных растворов.

ЛИТЕРАТУРА

1. Вьюшков В.В., Грачев С.Е., Коробцев В.П., Матюха С.В., Смагин А.А. // Патент России, №2075435, 1997 г.; кл. 6 С 01 В 25/455.

2. Вьюшков В.В., Голубев В.А., Грачев С.Е., Малый Е.Н., Мочалов Ю.С., Истомин В.Я., Смагин А.А. // Патент России, №2184079, 2002 г.; кл. С 01 В 25/455.

3. Willman P., Naejus R., Coudert R., Lemordant D. // Патент США, №5993767, 1999 г.

4. Bowden W.L. // Патент США, №4880714, 1989 г.

5. Syed Mahamed К., Padma D.K., Kalbandkeri R.G., Vasudeva Murthy A.R. // J. Fluorine Chem., 1983, v.23, p.509.

1. Способ получения гексафторфосфата пиридиния путем взаимодействия пятихлористого фосфора с фторирующим агентом, отличающийся тем, что в качестве фторирующего агента используют гидродифторид аммония с последующей обработкой полученного промежуточного продукта раствором соли пиридина.

2. Способ по п.1, отличающийся тем, что реакция пятихлористого фосфора с гидродифторидом аммония проводится путем постепенной порционной подачи твердого гидродифторида аммония в перемешиваемый раствор пятихлористого фосфора в 1,1,2,2-тетрахлорэтане с последующим выделением промежуточного продукта (смеси солей NH4PF6 и NH4Cl) фильтрацией и его сушкой.

3. Способ по пп.1 и 2, отличающийся тем, что реакция пятихлористого фосфора с гидродифторидом аммония в 1,1,2,2-тетрахлорэтане проводится при температуре 60÷100°С.

4. Способ по пп.1, 2, 3, отличающийся тем, что в качестве соли пиридина используют его гидрохлорид, а осаждение гексафторфосфата пиридиния из смеси солей гидрохлоридом пиридина проводят в водной среде.



 

Похожие патенты:

Изобретение относится к органической химии, конкретно к новым ионным жидкостям, предназначенным для применения в электрохимических элементах и в органическом синтезе.

Изобретение относится к способу получения средства защиты нефтепромыслового оборудования, предназначенного для подавления жизнедеятельности микроорганизмов и ингибирования коррозии в сероводородсодержащих и кислотных средах, в системах добычи, транспорта, хранения нефти и в заводняемых нефтяных пластах, и может быть использовано в нефтедобывающей промышленности.

Изобретение относится к способу получения средства защиты нефтепромыслового оборудования, предназначенного для подавления жизнедеятельности микроорганизмов и ингибирования коррозии в системах добычи, транспорта, хранения нефти и в заводняемых нефтяных пластах, и может быть использовано в нефтедобывающей промышленности.

Изобретение относится к дезинфицирующему средству из класса четвертичных аммониевых соединений, представляющему собой смесь хлоридов алкилацетилпиридиния, полученную путем этерификации при температуре 75-85С в среде органического растворителя монохлоруксусной кислоты синтетическим жирным спиртом фракции С12-С14 или С12-C18, или C16-C18 при их мольном соотношении 1,1:1 с последующим взаимодействием полученного алкилхлорацетата с пиридином при температуре 80-90С и мольном соотношении 1:1,0-1,1 в течение 6-9 часов и перекристаллизацией конечного продукта из органического растворителя, имеющего температуру плавления 98-103єС и содержание хлорид-ионов 8,5-9,9%.

Изобретение относится к регенерации облученного топлива и растворению оксидов металлов. .

Изобретение относится к новому химическому соединению 3-(циклогекс-3-енил)пиридинийбензилхлориду, который может быть использован в качестве ингибитора коррозии стали в минерализованных средах в нефтяной промышленности или в системах оборотного водоснабжения.

Изобретение относится к новому химическому соединению 2-метил-3,4-триметиленпиридинийбензилхлориду, который может быть использован в качестве ингибитора коррозии стали в минерализованных средах в нефтяной промышленности или в системах оборотного водоснабжения.

Изобретение относится к новым алкил(арил)пиридинийбензилхлоридам формулы I, где R - C2H5, C3H7, C4H9, C5H11, C6H13, C7H15, или формулы II, где R - CH3, C2H5, C3H7, C4H9, C5H11, или формулы III, где а) R1 = R4 = CH3, R2 = R3 = CH3, б) R1 = R4 = CH3, R2 = C2H5, R3 = CH3, в) R1 = R4 = C3H7, R2 = R3 = CH3, г) R1 = R4 = C3H7, R2 = C2H5, R3 = CH3, которые являются эффективными ингибиторами коррозии углеродистых сталей в средах с высоким содержанием кислорода.

Изобретение относится к способу получения алкокси-(алкилзамещенных)метилпиридиний хлоридов разветвленного строения, которые применяются в различных отраслях промышленности в качестве эмульгаторов, солюбилизаторов, моюще-дезинфицирующих средств, текстильно-вспомогательных веществ

Изобретение относится к средству, представляющему собой фторированные производные 1,4-нафтохинона общей формулы (I), обладающему цитотоксической активностью по отношению к раковым клеткам человека в культуре

Изобретение относится к новому химическому соединению, а именно к rac-N-[2,3-ди(тетрадецилокси)проп-1-ил]пиридиний бромиду, обладающему способностью доставлять нуклеиновые кислоты в клетки млекопитающих: Технический результат: описанное соединение, обладает низкой токсичностью и способно в виде спиртового раствора доставлять нуклеиновые кислоты в клетки млекопитающих

Настоящее изобретение относится к способу получения 1-(адамантил-1)-пиридиний бромида путем взаимодействия 1-бромадамантана с пиридином в мольном соотношении 1:1-2 в присутствии 1-10% мольных 3-гидроксипиридина при 90-120°C в течение 10-40 ч. Технический результат: разработан новый способ получения 1-(адамантил-1)-пиридиний бромида, отличающийся экологичностью и экономичностью процесса. 5 пр.
Наверх