Способ обработки заэвтектических силуминов в жидком состоянии

Изобретение относится к области литейного производства и может быть использовано при обработке литейных сплавов перед заливкой в литейную форму или в литейной форме. В тигель с расплавом погружают активатор, выполненный в виде двух многолопаточных роторов, расположенных соосно и с зазором друг относительно друга. Приводят роторы во встречное вращение со скоростями, создающими в расплаве градиент скоростей Gv не менее 200 1/с. Величину градиента определяют по формуле Gv=(ω1r12r2)/(r1-r2), где ω1, ω2 - скорости вращения внешнего и внутреннего роторов; r1 - внутренний радиус лопаток внешнего ротора; r2 - наружный радиус лопаток внутреннего ротора. Обеспечивается повышение качества заэвтектических силуминов в жидком состоянии за счет измельчения зерен кремния и снижения газонасыщенности сплава. 1 табл., 1 ил.

 

Изобретение относится к области литейного производства и может быть использовано при обработке литейных сплавов перед заливкой или в литейной форме.

Известны способы обработки литейных сплавов в жидком состоянии с целью их рафинирования, модифицирования или легирования, осуществляемые методами внешнего воздействия на металл: перемешивание, вибрация и т.п. Перемешивание производят специальным перемешивающим устройством, помещенным в жидкий металл. (В.М.Воздвиженский, В.А.Грачев, В.В.Спасский. Литейные сплавы и технология их плавки в машиностроении. - М.: Машиностроение, с.283-284).

Недостатком известных способов является малый уровень воздействия на металл, что приводит к слабым или неустойчивым эффектам по улучшению свойств сплавов.

Наиболее близким к заявляемому является способ обработки алюминиевых сплавов, включающий механическое воздействие на жидкий металл в тигле путем вращения погруженного в расплав ротора. В ходе процесса перемешивания вследствие трения в слоях расплава происходит обработка зародышей кристаллизации, при этом размер зерна кремния составляет до 80 мкм (Почкарев Ю.А. и др. Обеспечение качества отливок из цветных сплавов. Журнал «Литейное производство» №1, 2001 г., с.10-11).

Недостатком известного способа является низкий уровень обработки сплавов, т.к. при такой обработке практически отсутствуют эффекты модифицирования, особенно заэвтектических силуминов, из-за недостаточной величины градиента скоростей в расплаве Gv не более 50 1/с, величина которого определяется по формуле:

Gv=ωr/(R-r),

где ω - скорость вращения ротора;

r - радиус ротора;

R - радиус полости тигля.

Техническим результатом изобретения является повышение качества заэвтектических силуминов в жидком состоянии путем их перемешивания, т.е. улучшение их структуры за счет соударения в расплаве зародышей кристаллизации тугоплавкой фазы (зерен кремния) и их измельчения.

Суть предлагаемого технического решения заключается в том, что в известном способе обработки заэвтектических силуминов в жидком состоянии, заключающемся в перемешивании расплава, перемешивание осуществляется двумя многолопаточными роторами, расположенными соосно с зазором друг относительно друга, роторы вращают во встречном направлении со скоростями, создающими в расплаве градиент скоростей Gv не менее 200 1/с, величина которого определяется по формуле:

Gv=(ω1r12r2)/(r1-r2),

где ω1, ω2 - скорости вращения внешнего и внутреннего роторов;

r1 - внутренний радиус лопаток внешнего ротора;

r2 - наружный радиус лопаток внутреннего ротора.

При создании градиента скоростей в расплаве не менее 200 1/с происходит соударение зародышей кристаллизации тугоплавкой фазы (кремния - для заэвтектических сплавов) и их взаимное измельчение. В случае градиента скоростей меньше 200 1/с эффект модифицирования не обнаруживается, т.к. воздействие на твердую фазу мало.

Предложенный способ обработки поясняется чертежом, где изображена схема устройства для обработки заэвтектических силуминов в жидком состоянии.

Способ осуществляют следующим образом. В тигель 1 с расплавом 2, имеющим частично твердую фазу тугоплавкого компонента, погружают активатор, выполненный в виде внешнего 3 и внутреннего 4 соосных многолопаточных роторов с зазором между ними, приводят их во встречное вращение полыми осями 5 и 6 от управляемого привода 7 и выполняют перемешивание расплава. По полой оси 6 в расплав подают аргон с целью его рафинирования. В процессе обработки создают градиент скоростей в зазоре между роторами не менее 200 1/с. В процессе обработки всю дозу расплава прокачивают через зазор между роторами, при этом зародыши твердой фазы измельчаются и создают новые центры кристаллизации. При затвердевании обработанного расплава формируется измельченная структура. Градиент скоростей Gv при этом определяют по формуле:

Gv=(ω1r12r2)/(r1-r2),

где ω1, ω2 - скорости вращения внешнего и внутреннего роторов;

r1 - внутренний радиус лопаток внешнего ротора;

r2 - наружный радиус лопаток внутреннего ротора.

Обработка активатором заэвтектических силуминов в жидком состоянии сопровождается налипанием расплава на лопатки роторов. При извлечении из ванны вращающихся роторов капли жидкого металла под действием центробежной силы отрываются от их лопаток, происходит очистка роторов и подготовка их к последующей обработке расплава. Вращение внешнего ротора создает вращательное движение металла относительно неподвижного тигля, которое сопровождается образованием свободной поверхности расплава в виде параболоида вращения. Кроме того, встречное вращение роторов позволяет уменьшить скорости вращения каждого из них, что способствует уменьшению уровня вибрации и динамических нагрузок на роторы.

Для оценки влияния условий вращения роторов на свойства заэвтектических силуминов в жидком состоянии были выполнены эксперименты на лабораторной установке, состоящей из тигля с объемом рабочей цилиндрической емкости 40 дм3 и специально изготовленного устройства для перемешивания расплава, содержащего управляемый привод встречного вращения и активатор в виде двух соосных многолопаточных роторов. Внешний ротор имел следующие радиусы лопаток: наружный 0,15 м и внутренний r1=0,1 м; внутренний ротор - наружный r2=0,095 м и внутренний 0,060 м. В экспериментах был использован расплав АК21М2Н2,5.

Встречное вращение внутреннего ротора создает необходимый эффект модифицирования. Величина скорости вращения внутреннего ротора определялась из формулы градиента скоростей при ω1=11,5 рад/с, r1=0,1 м, r2=0,095 м, Gv=200 1/с и составляла ω2=1,6 рад/с.

По полой оси внутреннего ротора в расплав подавался инертный газ - аргон с расходом 0,2 дм3/с с целью рафинирования. Время обработки во всех экспериментах было принято одинаковым - 360 с. Температура расплава перед обработкой составляла 750°С. После каждой обработки из тигля отбирали пробу расплава и заливали в кокиль для получения образцов диаметром 30 мм и высотой 500 мм. На образцах выполняли продольный осевой разрез и готовили микрошлиф. По микрошлифу средней части образца оценивали балл пористости по ГОСТ 1583-93 и определяли размер кремнистых выделений с применением металлографического микроскопа по методу Розиваля.

Условия и результаты экспериментов приведены в таблице.

№ п/пСкорость вращения внешнего ротора, ω1 рад/сСкорость вращения внутреннего ротора, ω2, рад/сГрадиент скоростей Gv, 1/с

Gv=(ω1r12r2)/(r1-r2)
Балл пористости пробы металлаСредний размер зерна кремния, мкм
14-4156490
25-5195354
38-8312333
411,5-11,5448227
530-301170222
Примечания:

1. Знак у скорости вращения внутреннего ротора ω2 обозначает направление его вращения относительно направления вращения внешнего ротора: - встречное, + попутное.

2. При малых скоростях вращения внутреннего ротора ω2 (эксперименты №1 и №2) возникает эффект налипания расплава на лопатки внутреннего ротора, что может быстро вывести его из рабочего состояния.

Эффект измельчения зерна кремния уже в эксперименте №2 является показателем качества процесса, однако целесообразно вращение роторов выполнять в более жестких условиях (эксперименты №3, 4, 5), когда эффект модифицирования (измельчения зерен кремния) существенно выше.

Использование изобретения позволит улучшить качество обработки заэвтектических силуминов в жидком состоянии - снизить газонасыщенность сплава и измельчить зерна кремния, что в свою очередь повысит эксплуатационные свойства сплава.

Способ обработки заэвтектических силуминов в жидком состоянии, включающий перемешивание расплава, отличающийся тем, что перемешивание осуществляют двумя многолопаточными роторами, расположенными соосно с зазором друг относительно друга, роторы вращают во встречном направлении со скоростями, создающими в расплаве градиент скоростей Gv не менее 200 1/с, величина которого определяется по формуле

Gv=(ω1r12r2)/(r1-r2),

где ω1, ω2 - скорости вращения внешнего и внутреннего роторов;

r1 - внутренний радиус лопаток внешнего ротора;

r2 - наружный радиус лопаток внутреннего ротора.



 

Похожие патенты:

Изобретение относится к металлургии и может быть использовано при производстве слитков из металлов и сплавов. .

Изобретение относится к механическим вибрационным станкам вообще и к механическим вибростанкам, применяемым в литейном производстве, в частности. .

Изобретение относится к металлургии, конкретнее к производству слитков или отливок из различных металлов и сплавов, и может быть использовано в литейном производстве черных и цветных металлов.

Изобретение относится к металлургии, а именно к способам обработки сплавов для управления процессом кристаллизации с целью улучшения кристаллической структуры сплава.
Изобретение относится к литейному производству, в частности к литью в кокиль металлов и сплавов

Изобретение относится к литейному производству

Изобретение относится к металлургии и может быть использовано для получения литых заготовок в машиностроении. Устройство содержит изложницу, закрепленную на виброплите, при помощи болтов и гаек, вибратор эксцентрикового типа, закрепленный на нижней стороне виброплиты. Головки болтов выполнены выступающими над дном изложницы на 20 мм. Виброплита установлена на основании посредством направляющих штоков с пружинами. Залитый в изложницу расплавленный металл подвергают виброобработке в процессе его затвердевания. Головки болтов схватываются затвердевающей коркой металла и обеспечивают непосредственную передачу колебаний от виброплиты к слитку. Обеспечивается повышение эффективности вибрационного воздействия на процессы кристаллизации и структурообразования слитка. 1 ил.

Группа изобретений относится к металлургии, в частности к производству металлокомпозитов, а также может быть использована для обработки других сплавов. Способ получения композиционного сплава Al-Ti, упрочненного алюминидами титана Al3Ti, включает плавление и обработку расплава в непрерывном режиме в плавильной емкости с помощью поршня-вибратора, погружаемого в расплав и совершающего низкочастотные колебания в диапазоне 16-160 Гц с амплитудой δ, определяемой по выражению δ=1500η/(R02μρ), где η - динамическая вязкость расплава, μ - частота колебаний, ρ - плотность сплава, R0 - радиус поршня. Одновременно с вибрационными колебаниями на расплав воздействуют однополярными электромагнитными импульсами с частотой не менее 1000 Гц, длительностью импульса не более 1⋅10-9 с и мощностью не менее 1 МВт. Установка для получения композиционного сплава содержит тигель и поршень-вибратор, размещенный в тигле и соединенный через жесткий шток с источником гармонических колебаний звуковой частоты. Установка дополнительно содержит генератор однополярных электромагнитных импульсов с частотой не менее 1000 Гц, длительностью импульса не более 1⋅10-9 с и мощностью не менее 1 МВт, замкнутый в электрическую цепь на поршень-вибратор, и тигель, выполненные из графита. Поршень изолирован от штока диэлектрической прокладкой, расстояние от нижней грани поршня до дна тигля составляет не более полутора диаметров тигля и не менее радиуса тигля, а зазор между боковыми стенками поршня-вибратора и тигля находится в диапазоне 0,025-0,1 радиуса тигля. Сплав характеризуется субмикронным размером зерна при равномерном распределении композиционных составляющих по всему объему слитка. Повышаются эксплуатационные характеристики сплава. 2 н.п. ф-лы, 1 ил., 1 табл.
Наверх