Способ определения глицина в водных растворах



Владельцы патента RU 2282185:

Государственное образовательное учреждение высшего профессионального образования Воронежская государственная технологическая академия (RU)

Изобретение относится к аналитической химии и может быть использовано в химической, микробиологической, пищевой промышленности, а также на предприятиях агропромышленного комплекса. В способе определения глицина в водных растворах, включающем ввод анализируемой пробы в ячейку детектирования и регистрацию аналитического сигнала, в качестве ячейки детектирования используют пьезорезонансный сенсор, регистрацию аналитического сигнала осуществляют при элюировании анализируемой пробы, содержащей глицин в диапазоне концентраций 1·10-5-1·10-1 моль/дм3, при температуре 20±2°С и скорости элюента 30 см3/мин, в качестве элюента применяют смесь этилового спирта с водой в соотношении 1:1, измеряют резонансную частоту сенсора и вычисляют относительный сдвиг частоты по разнице частот колебаний сенсора в элюенте и после анализа, концентрацию глицина оценивают на основании градуировочного графика зависимости относительного сдвига частоты от концентрации глицина. Технический результат заключается в упрощении аппаратурного оформления анализа, уменьшении расхода реактивов для анализа и повышении экспрессности определений. 2 табл.

 

Изобретение относится к аналитической химии и может быть использовано в химической, микробиологической, пищевой промышленности, а также на предприятиях агропромышленного комплекса.

Известен способ определения лизина в водных растворах с применением анионита АВ-17-8 с активными группами [N(CH3)3]+. В этом способе определение лизина проводят при рН 11,5 (при этом значении рН лизин существует в виде аниона в растворе) [В.Д.Копылова, А.Н.Амелин, Ю.С.Перегудов и др. Взаимодействие полиэлектролитов с аминокислотами // Сорбционные и хроматографические процессы. - 2005. - Т.5, Вып.2. - С.260-264].

Наиболее близким по технической сущности и достигаемому эффекту является способ определения глицина в водных растворах методом капиллярного электрофореза [В.Ф.Селеменев, А.В.Калач, Н.Ю.Страшилина. Исследование аминокислотного состава плодов Cornus mas и Mespilus germanica методом капиллярного электрофореза // Сорбционные и хроматографические процессы. - 2004. - Т.4, Вып.3. - С.353-358]. В данном способе для определения аминокислот (в том числе и глицина) используют метод капиллярного электрофореза. Предварительно на пробу, содержащую аминокислоты, действуют раствором Na2CO3 и фенилизоцианата (ФТК) для дериватизации. Затем полученную смесь выпаривают при температуре 30-35°С, а сухой остаток растворяют в 500 мм3 дистиллированной воды. Полученные таким образом ФТК-производные аминокислот помещают в пробирку типа «Eppen-dorf», центрифугируют (n=6000 об/мин) и помещают во входной карусели автосемплера прибора «Капель-105». В качестве электролита применяют фосфатный буферный раствор (рН 9,13), ввод пробы осуществляют при давлении Р=30 мбар, длина волны λ=254 нм, температура анализа 30°С. В этих условиях продолжительность анализа составляет 15-20 мин. Таким способом возможно определение следующих аминокислот: глицин, серин, триптофан, пролин, валин, метионин, лейцин, изолейцин, гистидин, фенилаланин, тирозин, лизин, аргинин.

Недостатком прототипа является сложное аппаратурное оформление анализа, недостаточная экспрессность и значительный расход реагентов для определения глицина в водных растворах.

Технической задачей изобретения является упрощение аппаратурного оформления анализа, уменьшение расхода реактивов, а также повышение экспрессности определения глицина в водных растворах.

Поставленная задача достигается тем, что в способе определения глицина в водных растворах, включающем ввод анализируемой пробы в ячейку детектирования и регистрацию аналитического сигнала, согласно изобретению в качестве ячейки детектирования используют пьезорезонансный сенсор, регистрацию аналитического сигнала осуществляют при элюировании анализируемой пробы, содержащей глицин в диапазоне концентраций 1·10-5-1·10-1 моль/дм3, при температуре 20±2°С и скорости элюента 30 см3/мин, в качестве элюента применяют смесь этилового спирта с водой в соотношении 1:1, измеряют резонансную частоту сенсора и вычисляют относительный сдвиг частоты по разнице частот колебаний сенсора в элюенте и после анализа, концентрацию глицина оценивают на основании градуировочного графика зависимости относительного сдвига частоты от концентрации глицина.

Технический результат заключается в упрощении аппаратурного оформления анализа, уменьшении расхода реактивов для анализа и повышении экспрессности определений.

Способ осуществляется следующим образом.

1. Подготовка пьезосенсора к работе

При выполнении эксперимента использовали кварцевые резонаторы АТ-среза с серебряными электродами диаметром 5 мм и толщиной 0,3 мм с номинальной резонансной частотой колебаний 8-10 МГц.

Снижение рабочей частоты колебаний пьезорезонансных сенсоров рассчитывали по уравнению Зауэрбрея [Sauerbrey G.G. Messung von plattenschwingungen sehr kleiner amplitude dutch lichtstrom-modulation // Z. Phys. - 1964. - Bd.178. - S.457-471]:

,

где Δm - масса модификатора, г; f0 - резонансная частота пьезосенсора, МГц; Δf - изменение частоты резонатора, Гц; А - площадь поверхности модификатора, см2.

Условия элюирования: температура анализа 20±2°С; скорость элюента 30 см3/мин; время между последовательным инжектированием пробы t=90 с.

2. Градуировка пьезорезонансного сенсора. Предварительно рассчитанную массу навески глицина (необходимую для приготовления стандартного раствора глицина с молярной концентрацией 1,0·10-1 моль/дм3) взвешивают на аналитических весах, количественно переносят в мерную колбу вместимостью 100 см3, растворяют в дистиллированной воде и доводят до метки. Таким образом, получают стандартный раствор глицина с концентрацией 1,0·10-1 моль/дм3. Из этого стандартного раствора методом последовательного разбавления готовят серию растворов глицина с концентрациями 5,0·10-2; 1,0·10-2; 5,0·10-3; 1,0·10-3; 1,0·10-4; 1,0·10-5 моль/дм3.

В 6 химических стаканов пипеткой отбирают по 10,00 см3 стандартных растворов глицина. Затем поочередно (по 2 см3) каждый раствор шприцем инжектируют и элюируют. В качестве элюента применяют смесь этилового спирта с водой в соотношении 1:1. Перед началом измерений следует измерить сигнал пьезорезонансного сенсора в элюенте Δf2.

Для фиксирования откликов сенсора после введения каждой пробы измеряют резонансную частоту сенсора и вычисляют относительный сдвиг частоты Δfa по уравнению:

Δfa=Δf1-Δf2,

где Δf1 и Δf2 - частоты колебаний сенсора до и после анализа, Гц.

Измерения выполняют, переходя от разбавленных растворов к более концентрированным. По полученным результатам строят градуировочный график, откладывая по оси ординат Δfa, Гц, по оси абсцисс - соответствующие значения концентраций глицина.

Порядок проведения определений. После установления стабильного нулевого сигнала пьезорезонансного сенсора в канал с элюентом шприцем вводят анализируемый раствор объем пробы 1,0-2,0 см3.

Получают зависимость Δfa=f(t), которая описывает зависимость аналитического сигнала пьезорезонансного сенсора от времени.

Относительное содержание (массовую долю) аминокислоты в пробе находят по градуировочному графику.

Примеры осуществления способа

Пример 1. После помещения пьезорезонансного сенсора в ячейку детектирования и установления стабильного нулевого сигнала в канал с элюентом шприцем вводят анализируемый раствор (объем пробы 0,5 см3), содержащий глицин в концентрации 5,0·10-6 моль/дм3. Получают зависимость Δfa=f(t), которая описывает зависимость аналитического сигнала пьезорезонансного сенсора от времени. Способ неосуществим, так как сигнал сенсора находится на уровне шумов и проведение анализа невозможно. Результаты определений приведены в табл.1.

Пример 2. Подготовку сенсора проводили по аналогии с примером 1. Концентрация глицина в пробе 1,0·10-5 моль/дм3; объем пробы 1,0 см3. Способ осуществим. Результаты определения приведены в табл.1.

Пример 3. Подготовку сенсора проводили по аналогии с примером 1. Концентрация глицина в пробе 1,0·10-5 моль/дм3; объем пробы 2,0 см3. Способ осуществим. Результаты определения приведены в табл.1.

Пример 4. Подготовку сенсора проводили по аналогии с примером 1. Концентрация глицина в пробе 5,0·10-5 моль/дм3; объем пробы 2,0 см3. Способ осуществим. Результаты определения приведены в табл.1.

Пример 5. Подготовку сенсора проводили по аналогии с примером 1. Концентрация глицина в пробе 1,0·10-3 моль/дм3; объем пробы 2,0 см3. Способ осуществим. Результаты определения приведены в табл.1.

Пример 6. Подготовку сенсора проводили по аналогии с примером 1. Концентрация глицина в пробе 1,0·10-2 моль/дм3; объем пробы 2,0 см3. Способ осуществим. Результаты определения приведены в табл.1.

Пример 7. Подготовку сенсора проводили по аналогии с примером 1. Концентрация глицина в пробе 5,0·10-2 моль/дм3; объем пробы 2,0 см3. Способ осуществим. Результаты определения приведены в табл.1.

Пример 8. Подготовку сенсора проводили по аналогии с примером 1. Концентрация глицина в пробе 5,0·10-2 моль/дм3; объем пробы 3,0 см3. Способ неосуществим, так как наблюдается срыв генераций колебаний сенсора. Результаты определения приведены в табл.1.

Пример 9. Подготовку сенсора проводили по аналогии с примером 1. Концентрация глицина в пробе 1,0·10-2 моль/дм3; объем пробы 1,0 см3. Способ осуществим. Результаты определения приведены в табл.1.

Результаты сравнения характеристик предлагаемого способа с прототипом представлены в табл.2.

Из приведенных примеров видно, что при концентрациях менее 1,0·10-5 (пример 1) и более 5,0·10-2 моль/дм3 (пример 9) определение глицина в водных растворах невозможно. В первом случае по причине малой чувствительности сенсора, во втором - вследствие нестабильности показаний и срыва колебаний сенсора. Увеличение объема вводимой пробы свыше 2,0 см3 приводит также к срыву колебаний сенсора (пример 8).

Таким образом, предлагаемый способ определения глицина в водных растворах по сравнению с прототипом позволяет:

1) упростить аппаратурное оформление определений;

2) уменьшить расход реактивов при проведении анализа;

2) повысить экспрессность анализа.

Таблица 1

Примеры осуществления способа
Номер примераСигнал сенсора Δf×10-4, ГцПредел обнаружения ПрО×106, моль/дм3Чувствительность S×10-6, Гц·дм3/мольРезультат анализа
10,50--Способ неосуществим
226,209,901514,93Способ осуществим
333,912,39627,87Способ осуществим
434,18268,0055,97Способ осуществим
553,40545,8527,48Способ осуществим
655,971123,6013,35Способ осуществим
762,792640,855,68Способ осуществим
8---Способ неосуществим
975,753537,804,24Способ осуществим

Таблица 2
Анализируемое веществоПо прототипуПо предлагаемому способу
Вспомогательные реагентыПродолжительность анализа, минТемпература анализа °СВспомогательные реагентыПродолжительность анализа, минТемпература анализа, °С
ГлицинНеобходимы15-2030Отсутствуют2-320±2

Способ определения глицина в водных растворах, включающем ввод анализируемой пробы в ячейку детектирования и регистрацию аналитического сигнала, отличающийся тем, что в качестве ячейки детектирования используют пьезорезонансный сенсор, регистрацию аналитического сигнала осуществляют при элюировании анализируемой пробы, содержащей глицин в диапазоне концентраций 1·10-5-1·10-1 моль/дм3, при температуре 20±2°С и скорости элюента 30 см3/мин, в качестве элюента применяют смесь этилового спирта с водой в соотношении 1:1, измеряют резонансную частоту сенсора и вычисляют относительный сдвиг частоты по разнице частот колебаний сенсора в элюенте и после анализа, концентрацию глицина оценивают на основании градуировочного графика зависимости относительного сдвига частоты от концентрации глицина.



 

Похожие патенты:
Изобретение относится к аналитической химии органических соединений и может быть применено для определения паров масляной кислоты в присутствии пальмитиновой и стеариновой кислот в воздухе рабочей зоны предприятий химической и других отраслей промышленности.
Изобретение относится к отбору жидких проб для быстрого и простого качественного и количественного аналитического определения компонентов жидких проб. .
Изобретение относится к аналитической химии, а именно к способам определения кобальта. .

Изобретение относится к области аналитической химии, а именно к аналитическому контролю количества расширителя ФС в пасте для отрицательного электрода свинцово-кислотных аккумуляторных батарей.

Изобретение относится к области анализа материалов химическими способами (путем титрования, с использованием химических индикаторов), содержащих органические соединения магния и может быть использовано в химической и нефтехимической промышленности при контроле качества нефтепродуктов.
Изобретение относится к аналитической химии органических соединений и может быть применено при разработке процессов непрерывной ферментации белков. .

Изобретение относится к аналитической химии и может быть использовано для оперативного контроля концентрации примесей в жидкостях и газах как в лабораторных, так и в полевых условиях.

Изобретение относится к аналитической химии и может быть использовано в химической технологии производства целлюлозы сульфатным или натронным способом. .

Изобретение относится к физико-химическим методам анализа и может использоваться для входного контроля каустических магнезитовых порошков (ПМК), применяемых в качестве вяжущего средства при цементировании скважин.

Изобретение относится к аналитической химии органических соединений и может быть рекомендовано для концентрирования нафтолмоносульфокислот (1-нафтол-4-сульфокислоты, 1-нафтол-5-сульфокислоты, 2-нафтол-6-сульфокислоты) в очищенных сточных водах производства азокрасителей.

Изобретение относится к области анализа материалов, а именно используется для определения активности кислорода в расплавах металлов и шлаков. .

Изобретение относится к технике проведения анализа жидкостей и может быть использовано при анализе качества продуктов пищевой, химической, нефтехимической, фармацевтической промышленностей.

Изобретение относится к области физического материаловедения и может быть использовано для определения содержания водорода в металлах. .

Изобретение относится к измерительной технике и может найти применение при конструировании систем виброконтроля габаритных валов роторных машин в энергетике, нефтегазовой промышленности и в других областях.

Изобретение относится к области неразрушающего магнитного контроля изделий и предназначено для контроля износа стальных проволочных канатов грузоподъемных кранов, лифтов и других грузоподъемных машин.

Изобретение относится к аналитическому контролю молекулярного кислорода в теплоносителе и позволяет решать задачи контроля молекулярного кислорода в контурах под давлением с водным теплоносителем, в том числе в теплоносителе контуров исследовательских реакторов, входящих в их состав петлевых установок, других ядерно-энергетических установок с азотной компенсацией давления и реакторов типа ВВЭР с паровой компенсацией давления.

Изобретение относится к методам анализа химических или физических свойств материалов путем определения их электрохимических параметров с использованием цифровых вычислений и обработки данных и может быть использовано в металлургии, металлообработке и машиностроении для контроля качества продукции.

Изобретение относится к измерительной технике и может быть использовано для одновременного измерения влажности и плотности сыпучих веществ, например зерновых культур, круп и муки.

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения содержания микропримесей аммиака и других газов.

Изобретение относится к способам исследования процессов перемешивания жидких гомогенных и гетерогенных сред и может найти применение в химической, нефтехимической, биохимической, фармакологической, пищевой и других отраслях промышленности, а также в экологических процессах реагентной очистки промышленных и бытовых сточных вод.

Изобретение относится к органической химии, в частности к солям сложных эфиров аминокислот и п-толуолсульфату нонилоксикарбонилметиламина, строения: в качестве поверхностно-активного вещества катионного типа.
Наверх