Способ получения ангидрида трифторметансульфокислоты

Изобретение относится к усовершенствованному способу получения ангидрида трифторметансульфокислоты, используемого для синтеза производных трифторметансульфокислоты, в тонком органическом синтезе, в производстве лекарств, фунгицидов, экстрагентов, катализаторов. Способ включает дегидратацию трифторметансульфокислоты оксидом фосфора (V), взятых в мольном соотношении ТФМСК:Р2O5=1,0:(0,7-1,0), при перемешивании, перегонку жидких продуктов, образующихся из смеси трифторметансульфокислоты и оксида фосфора (V), при температуре смеси 95-130°С и при давлении ниже атмосферного, равном 150-200 мм рт.ст., с напуском в систему инертного газа, и утилизацию кубового остатка от перегонки ангидрида трифторметансульфокислоты, причем дегидратацию совмещают с отгонкой из реакционной смеси сырого ангидрида трифторметансульфокислоты, который затем повторно перегоняют в присутствии оксида кремния и оксида фосфора (V) при барботаже инертного газа, температуре 69-71°С/580-600 мм рт.ст. 2 з.п. ф-лы, 1 табл.

 

Изобретение относится к технологии получения фторорганических соединений, а конкретно к технологии получения ангидрида трифторметансульфокислоты (в дальнейшем АТФМСК), используемого в тонком органическом синтезе, в производстве фармацевтических препаратов, в биохимии - для сульфонилирования аминогруппы и др.

Известен способ получения АТФМСК путем взаимодействия трифторметансульфокислоты (ТФМСК) с оксидом фосфора (V), US Patent 5004829, 1991. В данном способе синтез сырого АТФМСК осуществляют при мольном соотношении ТФМСК к Р2O5, равном 1:0,66, при температуре 75-90°С с последующей дистилляцией сырого АТФМСК при 250 мм рт.ст. и утилизацией ТФМСК из кубового остатка синтеза АТФМСК. Данный способ обеспечивает выход АТФМСК на уровне 60%, но качество АТФМСК и производительность процесса синтеза не достаточны.

Известен способ получения высокочистого АТФМСК, включающий порционную дегидратацию ТФМСК оксидом фосфора (с выдержкой каждой порции оксида фосфора в ТФМСК не менее тридцати минут) в смеси с фторсодержащим растворителем, первую перегонку сырого АТФМСК из реакционной смеси, обработку кубового остатка от дистилляции фосфорной кислотой с отгонкой из реакционной смеси остаточного от первой перегонки сырого АТФМСК, ректификацию сырого АТФМСК с отбором готового продукта с утилизацией кубовых и побочных фракций обеих перегонок и ректификации (US Patent 5808149, 1998 г.). Выход готового продукта 53,2-57,4%. К недостаткам способа относятся: загрязнение готового продукта фторсодержащим растворителем (до 0,2%), содержание основного вещества в готовой продукции не выше 99%, повышенный расход реагентов (оксида фосфора, фосфорной кислоты, фторсодержащих растворителей). Способ многостадийный, с оборотом побочных фракций перегонки и ректификации, в которых происходит накопление примесей, ведущих к снижению выхода и качества готовой продукции. Отсутствуют данные по содержанию в АТФМСК сульфат-иона.

Известен также способ получения АТФМСК путем дегидратации ТФМСК оксидом фосфора (V) в присутствии силикагеля, с последующей перегонкой АТФМСК при нарастающем градиенте давления (патент РФ №2177940, 2000 г.) - прототип предлагаемого изобретения. В указанном способе дегидратацию и перегонку проводят при температуре жидкой смеси 95-130°С и абсолютном давлении 150-250 мм рт.ст. с перемешиванием смеси ТФМСК (или сырой ТФМСК) и оксида фосфора (V), взятых в мольном соотношении ТФМСК:Р2O5=1,0:(0,7-1,0), в которую добавляют силикагель (в количестве 5,0-5,5% от массы ТФМСК), перегонку образующейся смеси жидких продуктов ведут с отбором целевой фракции готового продукта при градиенте давления от 150-250 мм рт.ст. до 500-600 мм рт.ст., по окончании процесса перегонки осуществляют напуск в систему инертного газа (азота), а кубовый остаток от перегонки подвергают гидролизу в щелочном растворе. Состав готового продукта колеблется в интервалах (% масс.): основного вещества 94,7-99,8; фтор-иона 0,01-0,04; сульфат-иона 0,01-0,05%. Выход АТФМСК в готовый продукт 64-67,6%. К недостаткам указанного способа относятся нестабильность показателей качества и выхода готового продукта, повышенный расход реагентов (SiO2), повышенное содержание фтор- и сульфат-иона.

Технической задачей изобретения является повышение и стабилизация показателей качества и выхода АТФМСК, снижение затрат реагентов.

Поставленная задача решается тем, что в способе получения АТФМСК, включающем дегидратацию ТФМСК оксидом фосфора (V) при мольном соотношении CF3SO3Н:P2О5, равном 1,0:(0,7-1,0), перегонку АТФМСК из смеси в присутствии оксида кремния при температуре реакционной смеси 95-130°С при пониженном давлении с нарастающим градиентом давления и утилизацию кубового остатка от перегонки АТФМСК, дегидратацию кислоты и отгонку сырого АТФМСК из образующейся при дегидратации смеси ведут без добавки оксида кремния, перегонку сырого АТФМСК ведут при добавке оксида кремния и оксида фосфора по 1,5-2% каждого (относительно массы исходной сырой АТФМСК) и барботаже инертного газа на глубину 4/5 от исходной высоты жидкой перегоняемой смеси с расходом газа 90-110 л/час, целевую фракцию отбирают при температуре паров 69-71°С.

Предлагаемый способ имеет следующее обоснование.

1. На стадии дегидратации и отгонки сырой АТФМСК синтез ангидрида идет по реакции:

Параллельно идут побочные реакции синтеза трифторметилового эфира трифторметансульфокислоты (ТФМТ):

(см. J. of Org. Chem., v.52, №19, 1987, "Trifluoromethyl Triflate: Synthesis and Reactions", S.L.Taylor, J.C.Martin).

(см. "Tetrahedron Letters", vol.22, p.65-68, 1981).

А также реакции с участием примесей:

(см. "Фтор и его соединения", Дж. Саймонс, "Инлит", М., 1953).

(см. там же).

(см. «Synthesis», 1976, стр.319-320).

Таким образом, в сыром АТФМСК присутствуют: основное вещество - ангидрид трифторметансульфокислоты - (CF3SO2)2O и примеси: трифторметансульфокислота - CF3SO3Н, трифторметиловый эфир трифторметансульфокислоты - CF3SO3CF3, фтор- и сульфат-ионы в виде HF и H2SO4. Сернистый ангидрид SO2 удаляется при отгонке сырой АТФМСК, фторсульфоновая кислота в конечном итоге преобразуется в ТФМТ, Н2O поглощается Р2O5. В сыром АТФМСК всегда имеет место рост содержания F- и относительно используемой для синтеза ТФМСК, что обусловлено реакциями (4), (7).

2. В способе по прототипу для снижения содержания HF в сыром АТФМСК к смеси Р2O5 с ТФМСК добавляется оксид кремния:

Но эффективность этой добавки незначительна. Нами установлено, что содержание HF в сыром АТФМСК снижается незначительно даже при большом избытке SiO2. Это можно объяснить тем, что плотность образующейся метафосфорной кислоты или ее смеси с ортофосфорной кислотой сопоставима с плотностью оксида кремния (2,2 г/см3) и выше плотности ТФМСК и АТФМСК (1,67 г/см3). Оксид кремния смачивается метафосфорной кислотой, которая снижает эффективность реакции (8).

3. Добавка SiO2 к сырому АТФМСК на стадии его перегонки в количестве 1,5-2,0% от массы сырого АТФМСК обеспечивает содержание HF в готовом продукте не выше 100 ppm. А добавка к сырому АТФМСК оксида фосфора (V) в количестве 1,5-2,0% от массы сырого АТФМСК необходима для связывания влаги, выделяющейся при взаимодействии оксида кремния с HF:

При добавке оксидов кремния и фосфора меньше 1,5-2,0% масс. увеличиваются в товарном продукте примеси фтор-иона и ТФМСК. Добавка больше 1,5-2,0% не оказывает существенного воздействия на дальнейшее снижение примесей.

4. Использование барботажа инертного газа на глубину 4/5 от исходной высоты жидкой смеси при расходе инертного газа 90-110 л/час способствует получению товарного АТФМСК с содержанием: основного вещества не ниже 99,5% масс., F- не выше 0,01, не выше 0,005% масс. Повышение расхода на барботаж инертного газа (более 110 л/час) и понижение глубины барботажа (менее 4/5) приводит к уменьшению выхода готового продукта, а при расходе газа ниже 90 л/час возрастает содержание в готовом продукте эфира, кислоты и фтор-иона. Увеличение глубины барботажа нежелательно из-за выноса твердых компонентов перегоняемой смеси.

5. Указанное выше качество целевой фракции АТФМСК достигается отбором ее при температуре паров 69-71°С. При температуре паров ниже 69°С возрастает содержание эфира (ТФМТ), при температуре паров выше 71°С увеличивается содержание ТФМСК и сульфат-иона. Контроль процесса перегонки по температуре отгоняемых паров является более эффективным, чем по температуре перегоняемой жидкой смеси из-за ее инерционности.

Исходя из вышеизложенного, предлагаемый способ получения АТФМСК осуществляют следующим образом.

В реактор загружают трифторметансульфокислоту (сырую, бракованную или товарного качества) и оксид фосфора в мольном соотношении CF3SO3Н:P2O5, равном 1,0:(0,7-1,0), включают мешалку, создают с помощью вакуум-насоса абсолютное давление 150-220 мм рт.ст., включают обогрев реактора и ведут отгонку сырого АТФМСК при температуре реакционной смеси 95-130°С. Сырой АТФМСК собирают в приемник. По окончании отгонки (температура смеси растет выше 130°С) останавливают мешалку, отключают обогрев, реактор охлаждают и заполняют до атмосферного давления азотом, кубовый остаток гидролизуют водным раствором гидроксида бария (или кальция), сливают из реактора для переработки до сухой соли трифлата бария (или кальция). Отсутствие на этой стадии в исходной смеси силикагеля позволяет освободить реактор от кубового остатка без его вскрытия, сокращает время на подготовку реактора к работе. Сырой АТФМСК из приемной емкости передавливают инертным газом в перегонный куб, добавляют к нему P2O5 и SiO2 в количествах по 1,5-2,0% от массы сырого АТФМСК, подают в куб через барботер (на глубину 4/5 от верхнего уровня жидкой смеси) газообразный азот с расходом 90-110 л/час, создают абсолютное давление в кубе 220 мм рт.ст., включают обогрев реактора и начинают отбор I фракции. В ходе перегонки температура возгоняющихся паров постепенно растет. При 69°С отбор первой фракции прекращают, регулировкой вакуума создают абсолютное давление в кубе 580-600 мм рт.ст. и начинают отбор второй (целевой) фракции готового продукта в интервале температуры паров 69-71°С, затем отбирают III фракцию при температуре паров 71-60°С (при росте температуры в кубе, температура паров в ходе перегонки снижается). Затем отключают обогрев, перекрывают вакуум, подачей азота выравнивают давление в кубе до атмосферного. Куб промывают от кубового остатка раствором гидроксида бария или кальция, из промывного раствора утилизируют соли ТФМСК. III фракцию перегонки объединяют с I фракцией и либо подвергают повторной перегонке при указанных условиях, либо добавляют к сырому АТФМСК. В каждом случае отгонки и перегонки по окончании процессов систему заполняют азотом до атмосферного давления, так что отобранные фракции АТФМСК защищены при технологических вскрытиях сборных приемников от воздействия влаги атмосферного воздуха.

Примеры испытания способа на опытно-промышленных установках представлены в таблице. Предлагаемый способ обеспечивает стабильный выход ангидрида трифторметансульфокислоты более высокого качества, чем способ по прототипу.

ОперацияМасса реагентов, кг ТФМСК/Р2O5/SiO2 (c. АТФМСК/P2O5/SiO2)Р, мм рт.ст.(Т°С), Т°СВыход О.В. в АТФМСК, %Результаты анализов АТФМСК
19F ЯМР, % масс.Содержание, % масс.
O.B.CF3SO3НCF3SO3CF3Фтор-ионСульфат-ион
Базовый вариант
1. Синтез и отгонка сырой АТФМСК25,5/22/1,3220(95-130)81,6-82,896,8-98,31,20-2,300,4-1,10,073-0,120,028-0,067
Перегонка сырой АТФМСК(20/0/0)150/59095-13064-67,694,9-99,80,1-4,20,1-1,10,01-0,040,01-0,05
Новый вариант
1. Синтез и отгонка сырой АТФМСК30/25/0220(95-130)86,497,71,301,000,0810,0145
Перегонка сырой АТФМСК(20/0,3/0,3) без барботера150/59069-7167,599,550,360,090,0170,0055
2. Синтез и отгонка сырой АТФМСК30/25/0210(95-130)86,497,61,500,90,060,013
Перегонка сырой АТФМСК(20/0,4/0,3) с барботером150/59069-7167,599,660,290,050,00430,0015
3. Синтез и
отгонка сырой АТФМСК30/25/0220(95-130)86,596,43,00,60,0430,02
Перегонка сырой АТФМСК(20/0,3/0,3) с барботером150/59069-7167,699,80,130,070,0020,005
Примечание: (с. АТФМСК/Р2O5/SiO2)-соотношение реагентов «сырая АТФМСК: Р2O5:SiO2»;
(Т°С)- температура жидкой смеси, Т°С - температура паров;
О.В. - содержание основного вещества (CF3SO2)2О.

1. Способ получения ангидрида трифторметансульфокислоты, включающий дегидратацию трифторметансульфокислоты оксидом фосфора (V), взятых в мольном соотношении ТФМСК:Р2O5=1,0:(0,7-1,0), при перемешивании, перегонку жидких продуктов, образующихся из смеси трифторметансульфокислоты и оксида фосфора (V), при температуре смеси 95-130°С и при давлении ниже атмосферного, равном 150-200 мм рт.ст. с напуском в систему инертного газа и утилизацию кубового остатка от перегонки ангидрида трифторметансульфокислоты, отличающийся тем, что дегидратацию совмещают с отгонкой из реакционной смеси сырого ангидрида трифторметансульфокислоты, который затем повторно перегоняют в присутствии оксида кремния и оксида фосфора (V) при барботаже инертного газа, температуре 69-71°С/580-600 мм рт.ст.

2. Способ по п.1, отличающийся тем, что при перегонке сырого ангидрида трифторметансульфокислоты количество добавляемого оксида фосфора и оксида кремния составляет 1,5-2,0% каждого от массы исходного сырого ангидрида трифторметансульфокислоты.

3. Способ по п.1, отличающийся тем, что барботаж инертного газа ведут с расходом 90-110 л/ч на глубину 4/5 от исходного уровня жидкой смеси.



 

Похожие патенты:
Изобретение относится к области органической химии, в частности к способу получения перфторалкансульфофторидов, применяемых в качестве промежуточных соединений в синтезе перфторалкансульфокислот и их солей, а также в качестве компонента очищающего газа, облаающего высокой скоростью травления.

Изобретение относится к новым арилендиаминам формулы которые могут быть использованы в качестве кислотного красителя капрона, шелка и шерсти. .

Изобретение относится к новым гетероциклическим соединениям формулы которое может быть использовано в качестве красителя хлопчатобумажных тканей, шелка и шерсти, и как исходное вещество для синтеза макрогетероциклического соединения, обладающего свойством кислотного красителя для шелка и шерсти.

Изобретение относится к химической промышленности, а именно к получению 2,3-дикарбокси-5,8-диметокси-6-сульфоантрахинона, являющегося исходным продуктом для синтеза металлокомплексов тетра-(5,8-дигидрокси-6-сульфо)антрахинонопорфиразина, которые могут быть использованы в качестве катализаторов, красителей и в других областях науки и техники.

Изобретение относится к новым сложным эфирам сульфоновой кислоты, более конкретно к феноксифенилалкансульфонатам и лекарственному средству на их основе в качестве агониста каннабиноидных рецепторов.

Изобретение относится к области органической химии, в частности, к новым арилендиаминам, которые могут быть использованы в качестве прямого и кислотного красителя.
Изобретение относится к химической технологии, в частности к способу получения фторированного винилового эфира, содержащего сульфонилфторидную группу, а именно 5-трифторметил-3,6-диокса-8-сульфонилфторидперфтороктена, который может быть использован в качестве сомономера для получения фторполимеров, на основе которых изготавливают ионообменные мембраны.
Изобретение относится к химии поверхностно-активных веществ, в частности, к способу получения высокочистого лаурилсульфата натрия, пригодного для использования в медицине, фармацевтической, косметической и сталелитейной промышленности, для научных исследований.
Изобретение относится к химии поверхностно-активных веществ, в частности, к способу получения высокочистого лаурилсульфата натрия, пригодного для использования в медицине, фармацевтической, косметической и сталелитейной промышленности, для научных исследований.

Изобретение относится к способу получения перфторалкансульфофторидов (ПФАСФ), находящих применение в качестве промежуточных соединений, например, в синтезе перфторалкансульфокислот и их солей, а также в качестве компонентов очищающего газа, обладающего высокой скоростью травления.

Изобретение относится к усовершенствованному способу получения ангидрида трифторметансульфокислоты, используемого для синтеза производных трифторметансульфокислоты, в тонком органическом синтезе, в производстве лекарств, фунгицидов, экстрагентов, катализаторов.

Вптб // 392065
Наверх