Модуль порошкового пожаротушения

Модуль порошкового пожаротушения может быть использован для тушения пожаров как в замкнутом объеме, так и на открытой площадке, а также для группового применения с борта летательного средства при тушении лесных пожаров. Предлагаемый модуль порошкового пожаротушения содержит корпус с крышкой и зарядом огнетушащего состава, внутри которого размещены газогенератор с инициатором, подключенным к системе сигнализации для принудительного инициирования газогенерирующего заряда. Порошковый корпус выполнен нормированно разрушающимся при избыточном давлении не менее 1,0 МПа, газогенератор выполнен в виде перфорированной, или сгорающей, или разрывной емкости с газогенерирующим составом, при этом в качестве заряда термореагирующего огнетушащего порошкового состава используют экзотермическую или эндотермическую смесь окислителя с горючим, и/или с катализатором разложения окислителя, и/или с гидрофобизатором, в которой в качестве окислителя используют азотнокислый аммоний, и/или азотнокислый натрий, и/или азотнокислый калий, в качестве горючего - фосфорнокислый и/или сернокислый аммоний и/или красный фосфор, в качестве газогенерирующего состава используют смесь азотнокислого аммония и/или калия с серой, или полисульфидом, и/или древесным углем, или тринитротолуолом, или нитроцеллюлозой, и/или алюминием, и/или гидрофобизатором, а соотношение масс термореагирующего порошкового состава или заряда из него и газогенерирующего состава или заряда из него определяют по формуле , где МГГС - масса газогенерирующего состава, кг, QГОР - теплота сгорания газогенерирующего состава, кДж/кг, МОПС - масса огнетушащего порошкового состава, кг, ЕАКТ - энергия активации огнетушащего порошкового состава, кДж/кг. Заряд из термореагирующего огнетушащего состава может быть выполнен в виде порошка, или плава, или концентрированного водного или водно-органического раствора, или запрессованной шашки или шашек. В качестве катализатора разложения окислителя в заряде термореагирующего огнетушащего порошкового состава взят хромат калия, или бихромат аммония, или трехокись хрома, или хлорид меди, или хлорид аммония, или хлорид натрия, или тонкоизмельченные порошки меди, или цинка, или кадмия, или магния, или оксид кальция, или гидроксид кальция, или их смесь, или неорганические кислоты, или хлорная известь. В качестве гидрофобизатора для термореагирующего огнетушащего порошкового и газогенерирующего составов используется силикон. Обеспечиваемый технический результат - повышение огнетушащей способности модуля. 3 з.п. ф-лы, 2 ил., 4 табл.

 

Модуль порошкового пожаротушения (огнетушитель) относится к противопожарной технике. Предлагаемый огнетушитель в виде модуля в варианте самосрабатывания может использоваться в качестве отдельной огнетушащей самостоятельной единицы для установки в помещениях, не подключенных к стационарной системе пожаротушения, а также для группового применения с борта летательного средства при тушении лесных пожаров. Пожары в таких помещениях быстро развиваются и приводят к полному уничтожению материальных ценностей. Применение в этих помещениях автоматических установок водяного, пенного или газового пожаротушения не всегда возможно по условиям технологического процесса, санитарно-гигиенических требований, причинения большого косвенного ущерба или экономических затрат при срабатывании этих установок.

В связи с этим создание порошкового огнетушителя самосрабатывающего типа или срабатывающего от внешнего инициирующего сигнала стационарной системы пожаротушения с большим радиусом эффективного действия при минимальной инерционности срабатывания и высокой скорости доставки огнетушащего порошка к очагу пожара представляет собой современную актуальную задачу обеспечения пожаротушения при нанесении минимально возможного ущерба людям и материальным ценностям. Данная задача должна быть решена как при локальном поверхностном, так и при объемном тушении.

Известен подвешиваемый к потолку помещения огнетушащий модуль стационарной системы пожаротушения, содержащий выполненный из огнестойкого пластика корпус, внутри герметичной полости которого размещен огнетушащий состав, инициирующее устройство в виде взрывного заряда, подключенное к системе тепловых датчиков для инициирования срабатывания взрывного заряда, и фитиль, изолированный в центре емкости, при этом огнетушащий состав занимает практически полный объем герметической полости корпуса ((ЕР, 0483901, А 62 С 35/08, опубл.06.05.92).

Срабатывание этого известного огнетушителя, являющегося модулем по принципу действия и возможности работы в составе стационарной системы пожаротушения, осуществляется по сигналу тепловых датчиков, срабатывающих от пламени с внешней стороны емкости. Недостатком данного огнетушителя является то, что он обеспечивает только локальное, строго направленное тушение, сопровождающееся пониженной скоростью доставки огнетушащего состава и низкими расходами за счет узкого горла для выхода порошка.

Известен порошковый модуль, используемый как самостоятельная рабочая единица или в составе стационарной системы пожаротушения, содержащий выполненный из металла корпус, состоящий из двух жестко связанных между собой частей, внутри герметичной полости которого размещен огнетушащий порошок, газогенерирующее вещество и инициирующее устройство, подключенное к системе сигнализации для принудительного инициирования газогенерирующего при поступлении электрического импульса или выполненное самосрабатывающим для инициирования газогенерирующего вещества от теплового потока очага пожара, при этом газогенерирующее вещество и огнетушащий порошок занимают объем, составляющий не более 99% общего объема герметичной полости корпуса (RU, 2082472, А 62 С 35/10, опубл.27.06.97).

Известный порошковый модуль, выполненный по варианту исполнения самосрабатывающим, обеспечивает оперативное реагирование на тепло возникшего пожара за счет тепловых датчиков и черного лакового покрытия корпуса, а также позволяет обеспечить как направленный сектор защиты (выброс огнетушащего порошка), так и объемное тушение.

Выброс огнетушащего порошка в этом огнетушителе обеспечивается за счет создания внутри корпуса избыточного давления, которое приводит к раскрытию корпуса по выполненным на его стенках канавкам и образованию широкого прохода. Однако данный порошковый модуль имеет серьезные недостатки.

Первый серьезный недостаток заключается в том, что проход в корпусе для огнетушащего порошка выполнен в виде лепестков, связываемых между собой профилированными канавками. Это приводит к тому, что резкое нарастание давления внутри корпуса в ограниченном объеме может привести к несвоевременному (т.е. раннему, преждевременному) раскрытию лепестков. В результате этого вместо мощного выброса порошка произойдет высыпание последнего через слегка раскрытые лепестки. Это объясняется тем, что все лепестки вершинами сходятся в общей зоне, которая является максимально ослабленной по сравнению с материалом и толщиной самих лепестков на участке их оснований. Такая конфигурация выполнения лепесткового затвора, как правило, используется' лишь в тех случаях, когда необходимо нейтрализовать возможное повышение давления внутри емкости, и не предусматривает использование этого затвора как задерживающего элемента конструкции. Если его использовать в последнем варианте, то необходимо уравнять сопротивления зон участка вершин лепестков и зон участка их оснований.

Выполнение этих условий приводит к существенному усложнению конструкции корпуса огнетушителя и лишает его такого важного его свойства, как простота изготовления и технологичность.

Согласно патенту РФ №2128071 от 09.01.1998 г. изобретение направлено на решение следующих технических задач: при сохранении всех положительных свойств известного порошкового модуля (RU №2082472 от 27.06.97 r.) разместить инициирующее вещество и устройство в отдельном контейнере, который должен закрепляться в корпусе с тем, чтобы обеспечить возможность замены их, не заменяя при этом модуль в целом, а также обеспечить локальный и/или объемный массовый, залповый, рассеянный выброс огнетушащего порошка в зону очага пожара за счет того, что корпус должен быть выполнен с ослабленными по сечению или материалу участками.

Достигаемый при этом технический результат заключается в повышении эксплуатационной надежности и эффективности тушения пожара за счет обеспечения мощного импульса выброса и большой скорости доставки огнетушащего порошка к очагу пожара.

Указанный технический результат для первого варианта исполнения достигается тем, что порошковый модуль, предназначенный для стационарной системы, содержащий корпус, выполненный из металла, пластмассы или полимера в виде по крайней мере двух соединяемых между собой частей, внутри герметичной полости которого размещен огнетушащий порошок, газогенерирующее вещество и инициирующее устройство, подключенное к системе сигнализации для принудительного инициирования газогенерирующего вещества при поступлении электрического импульса, при этом газогенерирующее вещество и огнетушащий порошок занимают объем, составляющий не более 99% общего объема герметичной полости корпуса, снабжен контейнером, герметично закрепляемым на одной из частей корпуса с размещением по крайней мере части контейнера внутри полости корпуса, внутри контейнера расположено газогенерирующее вещество, в котором установлено инициирующее устройство в виде электронагревателя или электровоспламенителя, а в стенках контейнера, размещенных внутри корпуса, выполнено по крайней мере одно отверстие для выпуска газов в свободный объем полости корпуса, при этом стенки по крайней мере одной части корпуса выполнены с участками ослабленного сечения или ослабленного материала корпуса для гарантируемого раскрытия корпуса и объемного и/или локального выброса огнетушащего порошка при повышении давления газов в полости корпуса модуля. При этом контейнер может быть выполнен в виде стакана, герметично закрываемого крышкой, и выполнен за одно целое с одной из частей корпуса, а корпус выполнен с герметично закрываемым технологическим окном для засыпки огнетушащего порошка в полость корпуса. Данный патент РФ №2128071 выбран нами за прототип.

Недостатком прототипа является его низкая огнетушащая способность за счет следующих факторов:

1. Применен "холодный" инертный газогенерирующий состав азодикарбонамид (ТУ 6-03-408-80), торговая марка ЧХЗ-21 (порофор-21).

2. Не установлено соотношение между газогенерирующим составом и огнетушащим веществом, что является недопустимым для модулей данной конструкции.

3. В качестве огнетушащего порошка применен пирант А (ТУ 301-11-10-90) или ПСБ-3 (ТУ-6-18-139-83) и др. штатные порошки, дисперсность которых находится в пределах 50-150 мкм, а соответственно их удельная поверхность низка (3000-4000 см2/г). Отсюда низкая огнетушащая способность как по площади (1,5-2,5 кг/м2, см. А.Н.Баратов, Л.Н.Вогман. Огнетушащие порошковые составы. М., "Стройиздат", 1982 г. на стр.5), так и по объему (0,5-0,8 г/м3, см. Н.И.Смирнов. Установки пожаротушения. М., "Такир", 1999 г. стр.88).

Настоящее предлагаемое изобретение направлено на устранение вышеуказанных недостатков.

Поставленная цель достигается тем, что модуль порошкового пожаротушения, содержащий корпус с крышкой и зарядом огнетушащего состава, внутри которого размещен газогенератор с инициатором, подключенным к системе сигнализации для принудительного инициирования газогенерирующего заряда, отличается тем, что порошковый корпус выполнен нормированно разрушающимся при избыточном давлении не менее 1,0 МПа, газогенератор выполнен в виде перфорированной, или сгорающей, или разрывной емкости с газогенерирующим составом, при этом в качестве заряда термореагирующего огнетушащего порошкового состава используют экзотермическую или эндотермическую смесь окислителя с горючим, и/или с катализатором разложения окислителя, и/или с гидрофобизатором, в которой в качестве окислителя используют азотнокислый аммоний, и/или азотнокислый натрий, и/или азотнокислый калий, в качестве горючего - фосфорнокислый и/или сернокислый аммоний и/или красный фосфор, в качестве газогенерирующего заряда используют смесь азотнокислого аммония и/или калия с серой, или полисульфидом, и/или древесным углем, или тринитротолуолом, или нитроцеллюлозой, и/или алюминием, и/или гидрофобизатором, а соотношение масс термореагирующего огнетушащего порошкового состава или заряда из него и газогенерирующего состава или заряда из него определяют по формуле

где, МГГС - масса газогенерирующего состава, кг,

QГОР - теплота сгорания газогенерирующего состава, кДж/кг,

МОПС - масса огнетушащего порошкового состава, кг,

ЕАКТ - энергия активации огнетушащего порошкового состава, кДж/кг.

Причем, например, заряд термореагирующего огнетушащего порошкового состава в вышеуказанном модуле может быть выполнен в виде порошка, или плава, или концентрированного водного или водно-органического раствора, или запрессованной шашки или шашек. В заряде термореагирующего огнетушащего порошкового состава в качестве катализатора разложения окислителя взяты хромат калия, или бихромат аммония, или трехокись хрома, или хлорид меди, или хлорид аммония, или хлорид натрия, или тонкоизмельченные порошки меди, или цинка, или кадмия, или магния или оксид кальция, или гидроксид кальция, или их смесь, или неорганические кислоты, или хлорная известь.

В качестве гидрофобизатора для составов огнетушащего и газогенерирующего зарядов взят силикон.

Физическая сущность данного изобретения заключается в термосинтезе нового огнетушащего вещества внутри реактора (корпуса модуля) при температуре, обеспечивающей перевод огнетушащего вещества в парообразное состояние, создание повышенного давления в реакторе за счет газообразных продуктов сгорания газогенерирующего состава и термореагирующего огнетушащего состава, выброса высоконагретых паров огнетушащих веществ после разрушения корпуса модуля с образованием огнетушащего аэрозоля с размером частиц менее микрона и, соответственно, на несколько порядков большей удельной поверхностью тушения. Порошки типа "Пирант" имеют среднюю дисперсность d≈50 мкм, для ПСБ-3М˜(70-100 мкм), т.е., если сравнить объемы частицы с d1≈50 мкм и частицы с d2≈0,5 мкм, отношение объемов частиц огнетушащего вещества (ОТВ) составит π(di)3/6: π(d2)3/6=(50)3:(0,5)3=106. Другими словами, из каждой частички термореагирующего огнетушащего порошкового состава (ТРОПС) с d≈50 мкм, рецепты которых приведены в табл.1, 2 с использованием газогенерирующих составов ГГС (табл.3), можно получить 1000000 частичек диаметром 0,5 мкм.

Примеры термодинамических характеристик и состава продуктов сгорания ГГС и ТРОПС представлены в табл.4.

ТРОПС в отличие от аэрозолеобразующих составов (АОС) являются низкотемпературными низкоэкзотермичными или эндотермичными составами, неспособными гореть самостоятельно, абсолютно безопасными при переработке, и, что немаловажно, их стоимость на один-два порядка ниже стоимости АОС. При этом работоспособность модулей, представленных на фиг. 1, 2, обеспечивается при выполнении соотношения (1).

На фиг. 1 представлен пример исполнения модуля порошкового тушения для напольного, настенного или подвесного размещения в защищаемой зоне. Модуль работает следующим образом. При подаче импульса (теплового, электрического, радиоуправляемого) от запала 3 последний воспламеняет заряд из ГГС 5, находящийся в газогенераторе 4. Продукты сгорания через перфорации в корпусе газогенератора или при его разрушении возбуждают реакцию ТРОПС 6, находящегося в корпусе 1 с крышкой 2. При достижении внутри генератора избыточного давления более 1,0 МПа (или по желанию заказчика более высокого) корпус с продуктами сгорания ТРОПС и ГГС разрушается, выбрасывая высокоэффективное огнетушащее аэрозольное облако.

Так, например, при использовании шестилитрового модуля, представленного на фиг. 1, с 5 кг ТРОПС №15 (рецептура см. табл. 1) необходимое количество (X) ГГС №8 (рецептура см. табл.3) (дымный ружейный порох ДРП-3) определяли из выражения (1):

т.е. х>0,06 кг.

Для модельного эксперимента ДРП было взято в количестве 0,07кг. Тушение очагов класса А проводили на открытой площадке, при этом площадь тушения составила ˜20 м2, т.е. удельный расход огнетушащего вещества в этом опыте составил ˜0,25 кг/м2.

На фиг.2 представлен пример исполнения сбрасываемого порошкового модуля для тушения лесных пожаров. Основное отличие сбрасываемого модуля - это наличие стабилизатора (хвостового оперения) 7 и донного взрывателя 8.

Как видно из приведенных выше данных, предлагаемый модуль порошкового тушения более прост в конструкции и при этом по пожаротушащей эффективности (расход ОТВ на 1 м2 защищаемой площади), как минимум, в шесть раз выше.

Таблица 1

Примеры рецептур термореагирующих составов. (Заряд в виде плава, или в виде порошка россыпью, или в виде запрессованной шашки)
Наименование компонентаИндекс состава
123456789101112131415
Окислитель
Нитрат аммония70-8030-3530-5035-4085-9030-4070-80
Нитрат калия70-8030-355-1040-4535-4570-8035-4030-40
Нитрат натрия70-8010-2440-4535-4035-4070-8035-4070-80
Горючее
Фосфорнокислый аммоний5-102-2,55,5-1030-5015-255-10,55-2015-23,5
Сернокислый аммоний7-1310-125-1016-20,520-2210-1219-29,5
Фосфор красный10-1210-129,5-109-1012-149-21,5
Катализатор разложения окислителя
Хромат калия6,5-71-2
Бихромат аммония10-13,51-2
Хлорид натрия4-71-2
Трехокись хрома5-10
Хлорид меди3,5-51-2
Хлорид аммония4,5-5
Порошок магния3,5-51-2
Порошок цинка3-5,51-2
Порошок кадмия3-5
Порошок меди3-5,51-2
Оксид кальция1-2,51-2
Гидроксид кальция3,5-5
Хлорная известь3-5,5
Гидрофобизатор
Силикон0,5-10,5-10,5-10,5-10,5-10,5-10,5-10,5-10,5-1

Таблица 2

Примеры рецептур термореагирующих составов (Заряд в виде водного или водно-органического раствора)
Наименование компонентаИндекс состава
1234567891011
Окислитель
Нитрат аммония75-8530-3535-4035-40
Нитрат калия70-8030-3540-5040-4540-4570-8070-80
Нитрат натрия75-8514-2040-4535-4075-8040-45
Горючее
Фосфорнокислый аммоний10-1710-1510-1510-1515-1718-20
Сернокислый аммоний15-1715-1710-128-1010-1215-17
Катализатор разложения окислителя
Хромат калия6-71-2
Бихромат аммония8-101-2
Хлорид натрия3-51-2
Хлорид аммония3-5
Хлорид меди5-64-61-2
Азотная кислота3-51-2
Соляная кислота3-42-3
Хлорная известь5-8
Вода или водно-органический (50-70)% раствор15-20% сверх 100%15-20% сверх 100%15-20% сверх 100%15-20% сверх 100%15-20% сверх 100%15-20% сверх 100%15-20% сверх 100%15-20% сверх 100%15-20% сверх 100%15-20% сверх 100%15-20% сверх 100%

Таблица 3

Рецептура газогенерирующих составов
№ГГСОкислительГорючееГидрофобизатор
Нитрат аммонияНитрат калияСераПолисульфидДревесный угольТринитротолуолНитроцелюлозаАлюминийСиликон
185-909-14,50,5-1
285-909-14,50,5-1
385-909-14,50,5-1
485-909-14,50,5-1
585-909-14,50,5-1
689,5-9410-50,5-1
785-9010-15
8751510
985-9010-15
1085-9010-15
1185-9010-15
1290-9510-5
1385-9010-15
1465-7514-209,5-150,5-1

Таблица 4

Термодинамические характеристики ГГС и ТРОПС и состав продуктов их сгорания. (Давление среды при открытом горении Р=1,0 МПа)
Термодинамические характеристики и состав продуктов сгоранияИндексы составов
№1 ГГС Табл. 3№4 ГГС Табл. 3№6 ГГС

Табл. 3
№8 ГГС

Табл.

3
№11 ГГС Табл. 3№14 ГГС Табл.

3
№1 ТРОПС Табл. 1№4 ТРОПС Табл. 1№5 ТРОПС Табл. 1№6 ТРОПС Табл. 1№14 ТРОПС Табл. 1№15 ТРОПС Табл. 1
1. Температура горения, Т°К199822492327212010711976113816381012119010362217
2. Теплота горения Qгор, кДж/кг(расч)423344374699312717114917270234512353-0,0518305900
3. Энергия активации, кДж/кг405154,85338,5
4.Удельный объем газовой фазы, л/кг6183768,4748,6248,2132,5638,33853052235,496,4261,7630,4
5. Массовая доля конденсированной фазы Z при Tгор000,130,460,5800,030,280,40,680,30
5а. Массовая доля конденсированной фазы Z при Т=298°К0,690,410,550,730,820,580,580,860,770,950,630,7
Огнетушащие продукты сгорания
Н2O0,380,40,410,30,060,370,370,110,33-0,30,07
N20,290,320,320,10,120,270,310,140,230,040,240,22
СО2-0,2-0,24-0,13------
SO20,29--0,07-0,1------
NaPO3--------0,32--
K2SO4--------0,04-0,3-
H3PO4------0,080,170,39--0,63
NaPO3-------0,15---
SO3'5H2O--------0,01-0,02
ΣOTB0,960,920,730,710,180,870,760,571,00,340,860,92
Примечание. Состав продуктов сгорания для ГГС приведен при Тгор, для ТРОПС при Т=298°С.

1. Модуль порошкового пожаротушения, содержащий корпус с крышкой и зарядом огнетушащего состава, внутри которого размещены газогенератор с инициатором, подключенным к системе сигнализации для принудительного инициирования газогенерирующего заряда, отличающийся тем, что порошковый корпус выполнен нормированно разрушающимся при избыточном давлении не менее 1,0 МПа, газогенератор выполнен в виде перфорированной, или сгорающей, или разрывной емкости с газогенерирующим составом, при этом в качестве заряда термореагирующего огнетушащего порошкового состава используют экзотермическую или эндотермическую смесь окислителя с горючим, и/или с катализатором разложения окислителя, и/или с гидрофобизатором, в которой в качестве окислителя используют азотнокислый аммоний, и/или азотнокислый натрий, и/или азотнокислый калий, в качестве горючего фосфорнокислый и/или сернокислый аммоний и/или красный фосфор, в качестве газогенерирующего заряда используют смесь азотнокислого аммония и/или калия с серой, или полисульфидом, и/или древесным углем, или тринитротолуолом, или нитроцеллюлозой, и/или алюминием, и/или гидрофобизатором, а соотношение масс термореагирующего огнетушащего порошкового состава или заряда из него и газогенерирующего состава или заряда из него определяют по формуле

где МГГС - масса газогенерирующего состава, кг;

QГОР - теплота сгорания газогенерирующего состава, кДж/кг;

МОПС - масса огнетушащего порошкового состава, кг;

ЕАКТ - энергия активации огнетушащего порошкового состава, кДж/кг.

2. Модуль по п.1, отличающийся тем, что заряд из термореагирующего огнетушащего состава выполнен в виде порошка, или плава, или концентрированного водного или водно-органического раствора.

3. Модуль по п.1, отличающийся тем, что в заряде термореагирующего огнетушащего порошкового состава в качестве катализатора разложения окислителя взят хромат калия, или бихромат аммония, или трехокись хрома, или хлорид меди, или хлорид аммония, или хлорид натрия, или тонкоизмельченные порошки меди, или цинка, или кадмия, или магния, или оксид кальция, или гидроксид кальция, или их смесь, или неорганические кислоты, или хлорная известь.

4. Модуль по п.1, отличающийся тем, что в качестве гидрофобизатора для термореагирующего огнетушащего порошкового и газогенерирующего составов используется силикон.



 

Похожие патенты:

Изобретение относится к методам борьбы с пожарами и может быть использовано при тушении пожаров в помещениях. .

Изобретение относится к средствам пожаротушения, а именно к порошковым самосрабатывающим или срабатывающим от внешнего сигнала огнетушителям. .

Изобретение относится к средствам пожаротушения, а именно к порошковым самосрабатывающим или срабатывающим от внешнего сигнала огнетушителям. .

Изобретение относится к средствам пожаротушения, а именно к порошковым самосрабатывающим огнетушителем (ОСП), предназначенным для тушения пожаров класса A и B: на промышленных объектах, административных зданиях, складских помещениях и объектах социальной культуры.

Изобретение относится к противопожарной технике, в частности к автоматическим огнетушителям для локальной защиты объектов при тушении пожаров твердых и жидких горючих материалов в помещениях кладовых, кабельных галереях, бункерах, электрических шкафах и др., а также может быть использовано в системах автоматической противопожарной защиты при тушении больших площадей (объемов) группой огнетушителей, сблокированных между собой и управляемых дистанционно от системы противопожарной автоматики.

Изобретение относится к противопожарной технике, а именно пожарной автоматике, и может быть применено как для осаждения продуктов горения, так и для тушения пожаров всех классов.

Изобретение относится к противопожарной технике и позволяет повысить эффективность работы огнетушителя при тушении пожаров и улучшить безопасность при эксплуатации за счет использования защитного элемента, состоящего из двух половин и охватывающего стеклянный баллон с огнетушащей жидкостью, раскрывающийся при разрушении легкоплавкой нити, при этом отношение объемов огнетушащей жидкости и внутренней полости стеклянного баллона составляет 0,5 - 0,75.

Изобретение относится к противопожарной технике, может быть использовано для тушения загораний в замкнутых объемах, электроустановках, кабельных коробах, распределительных шкафах, коммутационных блоках, двигателях различных видов транспорта и позволяет повысить эффективность работы огнетушителя при тушении пожаров и безопасность при эксплуатации.

Изобретение относится к противопожарной технике, а именно к стационарным автоматическим системам пожарной защиты. .
Изобретение относится к способам пожаротушения в закрытых сооружениях (тоннелях, коллекторах, путепроводах, подземных помещениях)

Изобретение относится к противопожарной технике, к средствам для предотвращения или сдерживания огня, в частности, к оросителям, и может быть использовано в автоматических установках водяного и пенного пожаротушения

Изобретение относится к области пожаротушения и может быть использовано в железнодорожных или морских контейнерах для дальней перевозки грузов

Изобретение относится к противопожарной технике, в частности к оросителям, для использования в автоматических установках водяного и пенного пожаротушения

Изобретение относится к противопожарной технике, более конкретно к автоматизированным устройствам объемного тушения комбинированного действия

Изобретение относится к противопожарной технике, к средствам для предотвращения или сдерживания огня, в частности к оросителям, для использования в автоматических установках водяного и пенного пожаротушения. Технически достижимый результат - обеспечение возможности дистанционного управления и контроля состояния оросителя, т.е. определение факта срабатывания оросителя, а также контроля готовности оросителя к работе. Это достигается тем, что в спринклерном оросителе с управляемым пуском, содержащем распылитель и корпус, в котором размещен прижатый через уплотняющую дисковую пружину запорный клапан, терморазрушающийся чувствительный элемент, соединенный с термонагревательным элементом, с выводами для связи с управляющим источником питания, снабжен нормально-замкнутой контактной группой, связанной с выводами термонагревательного элемента, а контактная группа выполнена в виде запорного клапана и конусной чашки, расположенной между запорным клапаном и терморазрушающимся чувствительным элементом, причем поверхность конусной чашки имеет форму, идентичную форме конусной выборки запорного клапана, в верхней части корпуса расположена гильза, на которой жестко закреплен распылитель, состоящий из нижней чашки, жестко связанной с гильзой, и с верхней чашкой-рассекателем, на конической поверхности которой выполнены прорези, при этом нижняя чашка посредством, по крайней мере, трех наклонных спиц соединена с верхней чашкой-рассекателем, а внутри распылителя дополнительно установлен рассекатель, выполненный в виде тела вращения, например шара, крепящегося посредством, по крайней мере, трех радиальных, горизонтально расположенных, плоских лепестков, к наклонным спицам, причем ось тела вращения совпадает с осями гильзы и запорного клапана. 3 ил.
Наверх