Способ изготовления строительных радиационно-защитных конструкций

Изобретение относится к области ядерной техники. Сущность изобретения: способ изготовления строительных радиационно-защитных конструкций, включающий механическую обработку исходных гипсосодержащих компонентов, помещение их в форму, выдержку и извлечение готовых конструкций. Механическую обработку осуществляют путем диспергирования гипсосодержащих компонентов с одновременным их разогревом. При этом при завершении процесса диспергирования в измельченные компоненты вводят двухосновные предельные карбоновые кислоты в количестве 0,1-0,5 мас.% от массы диспергированных компонентов. Преимущества изобретения заключаются в улучшении прочностных характеристик конструкций. 3 з.п. ф-лы.

 

Изобретение относится к области ядерной техники и может быть использовано при создании радиационно-защитных экранов в регионах радиационного загрязнения почвы, при сооружении мест захоронения радиоактивных отходов, строительстве объектов, снижающих радиационный фон, а также при производстве защитных экранов для рентгеновского и смешанных излучений.

Известен способ производства радиационно-защитных конструкций (US, патент №4828761, 1990), согласно которому производят смешение цемента с водой и жидкими органическими полимерами с получением радиационно-защитной конструкции.

Недостатком известного способа следует признать длительность застывания смеси и невысокие механические характеристики.

Известен также способ изготовления радиационно-защитных конструкций (RU, патент 2083007, 1997), согласно которому проводят подготовку исходных компонентов, заполнение ими форм, выдержку и извлечение готовых конструкций, причем в качестве исходных компонентов используют предварительно механически активированные путем механического измельчения гипсосодержащие отходы.

Недостатком известного способа следует признать длительность застывания смеси и невысокие механические характеристики.

Наиболее близким аналогом предлагаемого способа можно признать способ изготовления радиационно-стойких конструкций (RU, патент 2102802, 1998), согласно которому проводят подготовку исходных компонентов, заполнение ими форм, выдержку и извлечение готовых конструкций, причем в качестве исходных компонентов используют гипсосодержащие отходы, которые в процессе подготовки механически активируют до температуры разогрева 70-90°С.

Хотя скорость твердения и увеличивается, но все же недостатком известного способа также следует признать длительность застывания смеси и невысокие механические характеристики.

Техническая задача, решаемая посредством предлагаемого способа, состоит в улучшении экологической обстановки вблизи промышленных предприятий, перерабатывающих кальцийсодержащее сырье.

Технический результат, получаемый при реализации предлагаемого способа, состоит в уменьшении времени получения строительных радиационно-защитных конструкций при одновременном улучшении их прочностных характеристик.

Для достижения указанного технического результата предложено проводить механическую обработку исходных гипсосодержащих компонентов, помещение их в форму, выдержку и извлечение готовых конструкций, причем механическую обработку осуществляют путем диспергирования гипсосодержащих компонентов с одновременным их разогревом, при этом при завершении процесса диспергирования в измельченные компоненты вводят двухосновные предельные карбоновые кислоты в количестве 0,1-0,5 мас.% от массы диспергированных компонентов. В качестве двухосновных предельных карбоновых кислот обычно используют щавелевую, малоновую, янтарную или адипиновую кислоты. Возможно использование смесей указанных кислот, а также отходы технологических сред, содержащие указанные кислоты. Время введения твердых кислот в диспергируемые исходные компоненты должно обеспечить полноту смешения (т.е. равномерное распределение вводимых двухосновных предельных карбоновых кислот по всему объему исходных компонентов). В качестве гипсосодержащих компонентов могут быть использованы фосфогипс, шламы металлургических производств и другие гипсосодержащие материалы при условии содержания не менее 30 мас.% гипса. В состав компонентов, используемых при изготовлении радиационно-защитных конструкций согласно предлагаемому способу, могут дополнительно входить строительные и/или промышленные отходы, шлаки и минеральные красители. В случае изготовления блоков или плит в формы может быть дополнительно установлена арматура.

Указанные двухосновные предельные карбоновые кислоты, с одной стороны, являются ускорителями твердения, а с другой стороны, увеличивают прочность готовых конструкций без уменьшения радиационно-защитных свойств.

В дальнейшем сущность предлагаемого способа будет раскрыта с использованием примеров реализации.

1. Куски фосфогипса, представляющие собой отходы переработки апатитов, диспергируют до размера примерно 0,01 мм с одновременным разогревом до 68°С. Выделяющаяся при диспергировании кристаллогидратная вода смачивает разогретое сырье. За 15 мин до прекращения диспергирования в диспергируемую массу вводят щавелевую кислоту в количестве 0,1 мас.% от массы диспергируемого фосфогипса. Затем смесь помещают в форму, и через 28 мин происходит полное твердение смеси с получением радиационно-защитной конструкции в форме кирпича толщиной 200 мм. Указанная конструкция уменьшает альфа-излучение в 1,3 раза, бета-излучение - в 1,2 раза, гамма-излучение - в 1,1 раз при одновременном увеличении прочности на 20% и сокращении времени твердения на 22% относительно аналогичной конструкции-прототипа.

2. Куски фосфогипса, представляющие собой отходы переработки апатитов, диспергируют до размера примерно 0,016 мм с одновременным разогревом до 73°С. Выделяющаяся при диспергировании кристаллогидратная вода смачивает разогретое сырье. За 18 мин до прекращения диспергирования в диспергируемую массу вводят свинецсодержащие отходы в количестве 14 мас.% и малоновую кислоту в количестве 0,3 мас.% от массы диспергируемого фосфогипса. Затем смесь помещают в форму, и через 33 мин происходит полное твердение смеси с получением радиационно-защитной конструкции в форме плиты толщиной 300 мм. Указанная конструкция уменьшает альфа-излучение в 1,9 раз, бета-излучение - в 1,7 раза, гамма-излучение - в 1,8 раз при одновременном увеличении прочности на 19% и сокращении времени твердения на 19% относительно аналогичной конструкции-прототипа.

3. Гальванический шлам медного производства диспергируют до размера примерно 0,008 мм с одновременным разогревом до 65°С. Выделяющаяся при диспергировании кристаллогидратная вода смачивает разогретое сырье. За 12 мин до прекращения диспергирования в диспергируемую массу вводят адипиновую кислоту в количестве 0,5 мас.% от массы диспергируемого шлама. Затем смесь помещают в форму, и через 26 мин происходит полное твердение смеси с получением радиационно-защитной конструкции в форме кирпича толщиной 230 мм. Указанная конструкция уменьшает альфа-излучение в 1,2 раза, бета-излучение - в 1,2 раза, гамма-излучение - в 1,2 раза при одновременном увеличении прочности на 22% и сокращении времени твердения на 17% относительно аналогичной конструкции-прототипа.

4. Процесс проводили аналогично примеру 1, но содержание щавелевой кислоты составило 0,08 мас.%. При достижении аналогичных защитных характеристик готовой конструкции относительно конструкции-прототипа время твердения не изменилось, как и прочность.

5. Процесс проводили аналогично примеру 3, но содержание адипиновой кислоты составило 0,6 мас.%. При достижении аналогичных защитных характеристик готовой конструкции относительно конструкции-прототипа время твердения не изменилось, как и прочность.

Использование диспергирования гипсосодержащих компонентов с одновременным их разогревом при одновременном введении двухосновных предельных карбоновых кислот в количестве 0,1-0,5 мас.% от массы диспергированных компонентов позволяет без ухудшения защитных характеристик полученных радиационно-защитных конструкций уменьшить время их твердения примерно на 20%, а также увеличить их прочность.

1. Способ изготовления строительных радиационно-защитных конструкций, включающий механическую обработку исходных гипсосодержащих компонентов, помещение их в форму, выдержку и извлечение готовых конструкций, отличающийся тем, что механическую обработку осуществляют путем диспергирования гипсосодержащих компонентов с одновременным их разогревом, при этом при завершении процесса диспергирования в измельченные компоненты вводят двухосновные предельные карбоновые кислоты в количестве 0,1-0,5 мас.% от массы диспергированных компонентов.

2. Способ по п.1, отличающийся тем, что в качестве двухосновных предельных карбоновых кислот используют щавелевую, малоновую, янтарную или адипиновую кислоты.

3. Способ по п.1, отличающийся тем, что в качестве гипсосодержащих компонентов используют фосфогипс, шламы металлургических производств при условии содержания не менее 30 мас.% гипса.

4. Способ по п.1, отличающийся тем, что в состав компонентов, используемых при изготовлении строительных радиационно-защитных конструкций, дополнительно вводят строительные и/или промышленные отходы, шлаки и минеральные красители.



 

Похожие патенты:

Изобретение относится к области производства строительных материалов и элементов. .

Изобретение относится к атомной энергетике и промышленности и может быть использовано при консервации на длительный период выведенных главным образом в результате аварии, объектов, на которых в результате аварии произошли разрушения защитных оболочек и/или других защитных барьеров делящихся ядерных материалов и выход радиоактивных веществ в производственные помещения и окружающую среду.

Изобретение относится к обработке металлов давлением и может быть использовано в судостроительной и атомной промышленности. .

Изобретение относится к радиационно-защитным экранам, выполненным из строительных блоков, и предназначено для защиты мишеней ускорителей заряженных частиц средних и высоких энергий.

Изобретение относится к изделиям, включающим в себя полотна (ткани), компаунды и пленки (пленочные слои), которые могут обеспечить защиту от вредных воздействий, представляющих угрозу жизни (радиация, химические вещества, биологические агенты, огонь, металлические метательные снаряды)

Изобретение относится к устройствам для защиты от ионизирующего излучения и может быть использовано при строительстве или реабилитации объектов использования атомной энергии, в том числе хранилищ отработавшего ядерного топлива и радиоактивных отходов

Изобретение относится к защите элементов, расположенных за расчетным защитным экраном (ЗЭ), от ионизирующих излучений космического пространства. Форма поверхности экрана считается аналитической. Способ заключается в том, что задают в дискретном виде величины локальных доз в центре эталонного ЗЭ сферической формы в зависимости от его толщины. Дискретную зависимость заданных доз от указанной толщины преобразуют в непрерывную. Разбивают расчетный ЗЭ на сектора со стандартными поверхностями, внутреннюю и внешнюю стороны которых представляют аналитическими функциями координат. Определяют радиальные толщины расчетного ЗЭ и оценивают величину локальной дозы, полученной облучаемым элементом от излучений, проходящих через все стандартные поверхности. Соответствующий интеграл по полному телесному углу вычисляют с помощью системы компьютерной алгебры. Сравнивают полученную локальную дозу с допустимой дозой и, в зависимости от результата, уточняют конструкцию расчетного ЗЭ или заменяют облучаемый элемент. Технический результат изобретения состоит в возможности оптимизировать конструкцию ЗЭ благодаря проведению предварительной оценки величины локальных доз ионизирующих излучений с большой точностью. 1 ил.
Наверх