Анод с запирающим слоем на основе ниобия и конденсатор на его основе

Изобретение относится к аноду с запирающим слоем на основе ниобия, состоящему из ниобиевой металлической сердцевины, проводящего слоя из субоксида ниобия и диэлектрического запирающего слоя из пятиоксида ниобия. В диэлектрическом запирающем слое содержание тантала может быть выбрано в диапазоне от 0,15÷1,2% от веса анода. Толщина слоя субоксида может составлять, как минимум, 50 нм. Техническим результатом является увеличение емкости конденсаторов. 2 н. и 2 з.п. ф-лы, 1 табл.

 

Данное изобретение относится к анодам для электролитических конденсаторов, конденсаторам на их основе, более конкретно, к аноду с запирающим слоем на основе ниобия и конденсатору на его основе.

В литературе описаны кислотно-земельные металлы ниобий и тантал в качестве исходных материалов для изготовления такого рода анодов и конденсаторов. Изготовление анодов происходит спеканием мелкозернистых металлических порошков для получения структуры с большой поверхностью, окислением поверхности тела, полученного при спекании, для создания непроводящего изолирующего слоя и нанесением противоэлектрода в виде слоя диоксида марганца или проводящего полимера.

До настоящего времени техническое значение для изготовления конденсаторов имел, по существу, танталовый порошок.

Существенные специфические свойства такого рода конденсаторов определяются удельной поверхностью, толщиной оксидного слоя d, образующего изолятор, и относительной диэлектрической постоянной εr. С помощью этих величин можно следующим образом рассчитать емкость С:

причем

означает диэлектрическую постоянную в вакууме и А означает поверхность конденсатора.

Изолирующий оксидный слой конденсатора обычно получают электролитически, при погружении ниобиевой, соответственно, танталовой структуры, полученной спеканием и образующей анод конденсатора, в электролит, обычно это разбавленная фосфорная кислота, и при приложении электрического поля. Толщина оксидного слоя прямо пропорциональна напряжению электролиза, которое прилагают с первоначальным ограничением тока до тех пор, пока ток электролиза не упадет до 0. Обычно оксидный слой создают при таком напряжении электролиза («формующее напряжение»), которое соответствует 1,5-4-кратному рабочему напряжению конденсатора.

Относительная диэлектрическая постоянная обычно составляет для пятиоксида тантала 27, а для пятиоксида ниобия 41. Рост толщины оксидной пленки при формовании составляет у тантала около 2 нм/В формирующего напряжения, у ниобия около 3,7 нм/В, так что большая относительная диэлектрическая постоянная ниобия компенсируется большей толщиной оксидного слоя при одинаковых формующих напряжениях.

Миниатюризацию конденсаторов осуществляют путем увеличения удельной поверхности при использовании для создания спекаемых структур более мелких порошков и снижении температуры спекания.

Однако для миниатюризации конденсаторов, то есть для повышения удельной емкости, существуют определенные пределы в связи с необходимой толщиной изолирующего оксидного слоя, так как внутри окисленной спекаемой структуры должна быть достаточная проводящая фаза для пропускания тока и ограничения образующегося омического тепла. С возрастанием миниатюризации конденсаторов возрастает и склонность к окислению. Это особенно относится к ниобиевым конденсаторам, которые по сравнению с танталовыми конденсаторами требуют большей толщины оксидного слоя при одинаковых формующих напряжениях.

Было обнаружено, что конденсатор имеет предпочтительные свойства, если при формовании используют электролит, который содержит полидентантный анион органической кислоты, образующий с ниобием стабильные комплексы. Подходящими органическими кислотами для применения в формующих электролитах являются, например, щавелевая (оксаловая) кислота, молочная кислота, лимонная кислота, винная кислота, фталевая кислота, предпочтительным кислотным анионом является анион щавелевой кислоты.

Электролит может содержать органическую кислоту в виде водного раствора. Предпочтительно используют водорастворимую соль органической кислоты. В качестве катионов пригодны такие, которые не влияют отрицательно на свойства оксидного слоя, константа комлексообразования которых с соответствующим анионом кислоты ниже, чем у ниобия с этим анионом кислоты, так что возможен обмен ионов ниобия на соответствующие ионы металлов. Предпочтительны катионы, которые при их встраивании в оксидный слой положительно влияют на свойства конденсатора. Особенно предпочтителен катион тантала.

Особенно предпочтителен в качестве формующего электролита водный раствор оксалата тантала. Изобретение далее описано на примере оксалата тантала, без ограничения общего характера.

В результате формования получают конденсаторы, которые по сравнению с конденсаторами, получаемыми при обычном формовании в разбавленной фосфорной кислоте, имеют большую почти на 50% емкость. Удельный ток утечки составляет менее 0,5 нА/мкФВ.

Обнаружено, что эффект увеличения емкости настолько больше, насколько выше проводимость электролитов при формовании.

Концентрацию электролита предпочтительно устанавливают такой, что удельная проводимость электролитов составляет от 1,5 до 25 мСм/см, более предпочтительно от 5 до 20 мСм/см, особенно предпочтительно от 8 до 18 мСм/см.

При формовании предпочтительно, чтобы формующий ток вначале был ограничено от 30 до 150 мА на м2 поверхности анода. При этом предпочтительно у электролитов с низкой проводимостью устанавливают более низкие значения формующих токов. В случае более высокой проводимости электролитов можно устанавливать формующие токи в верхних пределах.

Эффект увеличения емкости, согласно изобретению, связывают со специфическим выносом ниобия из анодной структуры во время формования. После формования в формующих электролитах обнаруживают содержание ниобия в пределах нескольких вес.% от использованной анодной структуры. Ниобий растворяется во время формования обычно в количестве от 3 до 5 вес.%, а в некоторых случаях даже до 10 вес.% анодной структуры. Фактически вынос происходит так специфически, что эффективная площадь поверхности конденсатора увеличивается по сравнению с формованием в разбавленной фосфорной кислоте. При обычном формовании в фосфорной кислоте в результате увеличения объема из-за образования оксидного слоя поры закрываются или закупориваются, так что эффективная площадь поверхности конденсатора уменьшается. По-видимому, анион органической кислоты атакует как раз в таких областях поверхности, которые граничат с особенно узкими каналами пор.

Другой предпочтительный эффект изобретения состоит в том, что оксидный слой образуется двуслойным: внешний изолирующий слой образует слой пятиоксида и внутренний между слоем пятиоксида и металлической сердцевиной слой недооксида. Съемки на растровом электронном микроскопе (РЭМ) поверхностей разломов формованных анодов показывают, что оксидные пленки имеют большую толщину, что соответствует росту толщины слоя 5 нм/В формующего напряжения или более, причем внутри заключена исчезающе малая металлическая сердцевина. С помощью оптического микроскопа можно различить, благодаря различиям в окраске (фиолетовая-зеленая), что оксидный слой состоит из двух соседних частичных слоев. Слой недооксида действует в качестве барьера на диффузию кислорода из слоя пятиоксида и таким образом вносит вклад в стабильность анода в течение длительного времени.

Другое преимущество изобретения состоит в том, что катион электролитного раствора в небольшом количестве осаждается на поверхности анода и во время окисления в связи с диффузионной кинетикой вступает в конкуренцию с диффузией кислорода внутрь анода и ниобия к поверхности анода, стабилизирующе встраиваясь в оксидный слой. Так тантал, который не образует стабильных субоксидов, подходит для стабилизации слоя пятиоксида. В связи с тем что ниобий обладает большей вероятностью обмена (смотри, например, J.Perriere, J.Siejka, J.Electro. Chem. Soc., 1983, 130(6), 1260-1273), ниобий способен во время окисления «перескочить» через нанесенный на поверхность тантал, так что кажется, что тантал сдвигается внутрь растущего оксидного слоя. Он обогащается на внутреннем слое пятиоксида и стабилизирует его. Аноды, формованные согласно изобретению, имеют содержание тантала от 0,15-1,2, предпочтительно от 0,3 до 0,6% от веса анода, причем тантал концентрируется в слое пятиоксида. Часть эффекта, повышающего емкость, в случае данного изобретения, вероятно, связана с положительным влиянием на рост толщины слоя пятиоксида и, при необходимости, с диэлектрической постоянной.

Объектом данного изобретения являются аноды с запирающим слоем для конденсаторов на основе ниобия, состоящие из металлической ниобиевой сердцевины, проводящего слоя из субоксида ниобия и диэлектрического запирающего слоя из пятиоксида ниобия. Предпочтительно толщина слоя из субоксида ниобия составляет, как минимум, 30 нм, особенно предпочтительно, как минимум, 50 нм.

Особенно предпочтительные аноды, согласно изобретению, имеют запирающий слой из пятиоксида ниобия с содержанием тантала от 0,15-0,5% от веса анода.

Примеры

а) Получение ниобиевого порошка

Использован порошок ниобия, полученный по способу, предложенному заявителем в опубликованной заявке № DE 19831280 А1. Порошок содержит следующие примеси посторонних элементов (ч/млн.):

Mg: 230,

О: 15425,

Н: 405,

N: 111,

С: 31,

Fe: 3,

Cr: 2,

Ni: 2,

Та: 78.

Далее были определены следующие физические свойства:

удельная поверхность, согласно BET4,61 м2/г,
размер частиц, согласно FSSS4,2 мкм,
насыпная плотность17,9 г/дюйм3,
сыпучесть21 сек,

распределение размеров частиц, определенное по АСТМ В822

D10:78,5 мкм,
D50:178,4 мкм,
D90:288,8 мкм,

а также определенный из РЭМ съемок размер первичных частиц около 550 нм.

б) Изготовление ниобиевых анодов:

Из порошка на соответствующих матрицах при вставлении танталовой проволоки изготовлены аноды с прессованной плотностью 2,9 г/см3 и при температуре 1125°С подвергнуты спеканию в течение 20 минут.

Таблица 1
Раствор формующего электролитаСвойства конденсатора
Прим №ЭлектролитТа вес %Са2O4-2Удел. провод. мСм/смСодер. Та млн.дCV/г мФВ/гIr/CV нА/мкФВ
10,1% Н3PO4--2,53н.н80 К0,23
20,25% Н3PO4--4,58н.н87 К0,44
3Щавелевая к-та в Н2O-0,102,86н.н92 К0,75
4Щавелевая к-та в Н3O-0,205,53н.н97 К0,83
5Та-оксалат в Н2O0,050,051,44н.н87 К0,26
6Та-оксалат в Н2О0,10,071,771350089 К0,5
7Та-оксалат в 0,1 % Н3PO40,10,073,83670090 К0,25
8Та-оксалат в Н2O0,30,214,869800103 К0,51
9Та-оксалат в Н2O0,40,296,36340088 К0,64
10Та-оксалат в Н2O0,40,347,43280094 К0,48
11Та-оксалат в Н2O0,50,357,82700108 К0,43
12Та-оксалат в H2O0,40,398,5310092 К0,57
13Та-оксалат в Н2O0,750,5110,224600115 К0,30
14Та-оксалат в Н2O0,750,5311,413300123 К0,48
15Та-оксалат в Н2O1,250,8416,635300111 К0,49
16Та-оксалат в Н2O1122,84800141 К1,35

н.о. - не обнаружен.

в) Анодирование

Для получения изолирующего оксидного слоя на аноде, подвергнутом спеканию, аноды погружают в раствор электролита и анодируют при ограничении тока до 100 мА/г веса анода, вплоть до напряжения 40 В, при температуре 80°С. После достижения напряжения в 40 В выдерживают еще 2 часа при этом напряжении, причем сила тока падает до нуля.

Раствор электролита имеет состав, приведенный в таблице 1, и удельную проводимость, приведенную там же.

г) Измерение электрических характеристик

Удельную емкость измеряют известным способом при переменном напряжении 120 Гц, при амплитуде переменного напряжения 20 мВ и при положительном постоянном напряжении на аноде (ППАН) 1,5 В. Ток утечки определяют при измерении тока при постоянном напряжении 28 В. Результаты измерения приведены в таблице 1.

1. Анод с запирающим слоем на основе ниобия, состоящий из металлической ниобиевой сердцевины, проводящего слоя из субоксида ниобия и диэлектрического запирающего слоя из пятиоксида ниобия.

2. Анод по п.1 с содержанием тантала в диэлектрическом запирающем слое от 0,15÷1,2% от веса анода.

3. Анод по п.1 или 2, причем толщина слоя субоксида составляет, как минимум, 50 нм.

4. Конденсатор, содержащий анод, по одному пп.1-3.



 

Похожие патенты:

Изобретение относится к области электрохимии, а именно к способам восстановления оксида ниобия, включающим тепловую обработку исходного оксида ниобия в присутствии материала-газопоглотителя в атмосфере, обеспечивающей возможность переноса атомов кислорода из исходного оксида ниобия к материалу-газопоглотителю, в течение достаточного времени и при достаточной температуре для того, чтобы исходный оксид ниобия и указанный материал-газопоглотитель образовали оксид ниобия с пониженным содержанием кислорода.

Изобретение относится к области электротехники, в частности к изготовлению конденсаторов в портативных устройствах. .

Изобретение относится к ниобиевому порошку для изготовления конденсаторов с большой удельной емкостью. .

Изобретение относится к области электротехники, в частности к порошку для конденсатора, состоящего в основном из ниобия с поверхностным покрытием, которое содержит, как минимум, один элемент из группы Al, Si, Ti, Zr, Y и Та, и к аноду конденсатора, состоящего из спекшего порошка с изолирующим слоем, полученным путем анодного окисления, где слой содержит, как минимум, один из элементов из группы Al, Si, Ti, Zr, Y и Та.

Изобретение относится к новым материалам для конденсаторов, способу их получения и конденсаторам, использующим эти материалы. .
Изобретение относится к области разработки электролитических конденсаторов на основе двойного электрического слоя, которые могут быть при определенных условиях использованы в современной энергетике, автомобилестроении и т.д.

Изобретение относится к технологии изготовления электролитических конденсаторов, в частности, к катодной фольге алюминиевого электролитического конденсатора, и способу ее изготовления.
Изобретение относится к электронной технике и может быть использовано в производстве высокоемких оксидных конденсаторов с объемно-пористым анодом. .

Изобретение относится к области электротехники, в частности к проволоке конденсаторного сорта, полученной порошковой металлургией, содержащаей, по меньшей мере, ниобий и кремний, в которой ниобий является металлом, присутствующим в ниобиевой проволоке в наибольшем весовом процентном количестве

Изобретение относится к порошковой металлургии, к порошку тантала, пригодному для изготовления конденсатора

Изобретение относится к пористому коксу, который может быть использован как электродный материал для электрохимических конденсаторов

Изобретение относится к области электротехники и может быть использовано в приборах мобильной связи в качестве источника постоянного тока многократного использования. Предложенный суперконденсатор выполнен в виде тонкопленочной структуры, содержащей электроды, разделенные пленочным слоем твердого электролита, при этом, в качестве твердого электролита выбран диоксид циркония, стабилизированного иттрием, один из электродов представляет собой наночастицы графена, а второй проводящий полимер - полипиррол. Повышение удельной энергии конденсатора является техническим результатом изобретения. 1 ил.

Изобретение относится к способу изготовления катодной обкладки, представляющей собой танталовую плоскую пластину или танталовый корпус конденсатора, с оксидированным рутениевым покрытием для танталового объемно-пористого конденсатора. Способ включает в себя подготовку поверхности катодной обкладки перед нанесением покрытия, заключающуюся в пескоструйной обработке как плоской пластины, так и внутренней поверхности корпуса конденсатора или получении на внутренней поверхности корпуса конденсатора подслоя танталового порошка путем нанесения спиртовой суспензии танталового порошка с последующим спеканием в вакууме, травление в растворе азотной кислоты с последующей промывкой дистиллированной водой и нанесение на подготовленную поверхность рутениевого покрытия. При этом пескоструйную обработку проводят с помощью порошка оксида алюминия или карбида кремния с крупностью частиц от 20 до 100 мкм при давлении воздуха 1,5-3,0 ат. Травление в растворе азотной кислоты производят в присутствии плавиковой кислоты или фторида аммония в количестве 10-20 мас.% при температуре 25-30°C в течение 20-60 с. Нанесение рутениевого покрытия с толщиной 0,5-5,0 мкм проводят из электролита, содержащего 2-20 г/л рутения в виде аммонийных солей биядерного нитридоаквахлоридного комплекса, например, с формулой (NH4)3[Ru2(µ-N)(H2O)2Cl8], 5-20 г/л серной кислоты, 10-20 г/л сульфамата аммония, в условиях перемешивания электролита при катодной плотности тока 1,0-10,0 А/дм2, температуре 40-60°C. Затем полученное металлическое рутениевое покрытие подвергают электрохимическому анодному оксидированию в растворе 35-40%-ной серной, фосфорной, азотной или щавелевой кислоты с выдержкой под анодным потенциалом при напряжении 10-100 В и силе тока 100-500 мА в течение 5-20 мин. Технический результат заключается в увеличении удельной емкости танталовых объемно-пористых электролитических конденсаторов и достижении устойчивой работы при эксплуатации в широком диапазоне температур. 2 з.п. ф-лы, 2 ил., 8 табл.

Изобретение может быть использовано в электрохимической области. Способ получения композиционного электродного материала на основе кобальт ванадиевого оксида и оксидных соединений молибдена включает осаждение электрокаталитического оксидного покрытия на модифицированной поверхности стеклоуглерода, при этом электрокаталитическое оксидное покрытие формируют на основе смешанных оксидов ванадия, кобальта и молибдена путем их осаждения из водного раствора электролита температурой 60÷65°C, при pH 4÷4,5, содержащего соли кобальта, молибдена, никеля, железа, лимонную и борную кислоты, под действием переменного асимметричного тока, в котором соотношение средних токов за период катодного и анодного составляет 1,5:1 при напряжении 40÷50 B и следующем соотношении компонентов, г·л-1: сульфат кобальта (CoSO4·7H2O) - 100,0÷110,0, гептамолибдат аммония ((NH4)6Mo7O24·4H2O) - 40,0÷56,0, сульфат железа (FeSO4·7H2O) - 6,0÷14,0, сульфат никеля (NiSO4·7H2O) - 18,0÷20,0, лимонная кислота (HOC(СН2СООН)2СООН) - 2,5÷3,0, борная кислота (H3BO3) - 13,0÷15,0. Изобретение позволяет снизить энергоемкость и упростить процесс получения композиционного электродного материала на основе кобальт ванадиевого оксида и оксидных соединений молибдена, увеличить прочность композиционного электродного материала и увеличение стабильности и эффективности его работы. 1 табл., 3 пр.

Изобретение относится к электротехнике, а более конкретно к слоистым пленочным накопителям электрической энергии - электролитическим конденсаторам, композиционные слои которых существенно отличаются по составу и физической структуре. Пленочный конденсатор содержит разделенные диэлектриком пакетные электроды, полимерное основание которых выполнено из высокопористого рифленого материала, покрытого токопроводящим слоем, оснащенным токоотводом. Полимерная основа конденсаторной структуры выполнена из углеродных волокон бусофита, металлизированных с поверхности пористым слоем титана толщиной 0,2-2 мкм, а токоотводы толщиной 5-20 мкм выполнены композитными: бусофит и титановый слой с покрытием из высокопроводного металла, преимущественно меди, серебра. Повышение удельной энергоемкости многослойной пленочной структуры конденсатора (не менее 40 Вт·час/кг), при снижении внутреннего омического сопротивления, является техническим результатом изобретения. 1 ил.

Изобретение относится к области электротехники, а именно к способу повышения удельной энергии устройства накопления энергии, например, суперконденсатора. Способ включает увеличение емкости устройства накопления энергии нанесением материала в пористой структуре устройства накопления энергии с помощью процесса атомно-слоевого осаждения, предназначенного для увеличения расстояния, на которое проникает электролит внутри каналов пористой структуры, или размещением диэлектрического материала в пористой структуре. Другой способ включает отжиг устройства накопления энергии, чтобы вызвать диффузию электропроводящего вещества к поверхности структуры и формирование на ней электропроводящего слоя. Другие способы увеличения удельной энергии включают повышение напряжения пробоя, формирование псевдоконденсатора, осаждение электропроводящего материала в пористой структуре. Повышение емкости и удельной энергии устройства накопления энергии является техническим результатом изобретения. 5 н. и 29 з.п. ф-лы, 12 ил.

Изобретение относится к области микро- и наноэлектроники и может найти применение в приборостроении, энергетике, электронике, в приборах мобильной связи в качестве слаботочного источника питания. Предложенный суперконденсатор включает отрицательный электрод (4) и положительный электрод (5), содержащие легированный графен, и слой (6) с ионной проводимостью, расположенный между положительным и отрицательным электродами (4), (5), при этом тип легирования графена на положительном электроде (4) противоположен типу легирования графена на отрицательном электроде (5). Повышение удельной электрической емкости суперконденсатора, является техническим результатом изобретения. 5 з.п. ф-лы, 5 ил., 1 пр.
Наверх