Магнитомягкая ткань



Владельцы патента RU 2284598:

Государственное образовательное учреждение высшего профессионального образования "Ивановская государственная текстильная академия" (RU)

Изобретение относится к текстильным материалам и может быть использовано для изготовления магнитных систем, а также для экранирования электромагнитного излучения. Магнитомягкая ткань в качестве магнитомягкого материала содержит смесь порошков сплава альсифер с размером частиц 5...10 мкм и магнитомягкого Mn-Zn-феррита с размером частиц 50...100 мкм со связующим полимером. Ткань - основа выполнена из лавсана по текстильной технологии, при этом содержание компонентов составляет, мас.%: нити лавсана 30-20; связующий полимер 15-20; порошок магнитомягкого феррита 15-20; порошок сплава альсифер 30-50. Техническим результатом изобретения является получение гибкого магнитного материала, обеспечивающего экранирование внешнего сверхвысокочастотного электромагнитного излучения в режиме ферромагнитного резонанса. 1 табл.

 

Изобретение относится к текстильным материалам и может быть использовано в различных отраслях техники и технологии для изготовления магнитных систем, а также для экранирования электромагнитного излучения.

Известен электромагнитный материал [1], содержащий (80-95)% ферромагнитного порошка, (5-20)% термореактивной смолы в виде порошка и (0,1-1,0)% желатообразователя для металла. Изделиям из указанной смеси характерны высокая механическая прочность и большое значение начальной магнитной проницаемости. Однако данный материал имеет и недостатки: его начальная и максимальная магнитные проницаемости уступают соответствующим характеристикам современных магнитомягких материалов, например альсиферу (сплав Fe-Si-Al); из него невозможно изготовить изделия методами деформирования и швейной технологии, т.к. он не обладает достаточной гибкостью, его неупругая деформация перед разрушением незначительна.

Наиболее близким к предлагаемому материалу является эластичный композиционный материал на основе каучука [2]. В состав данного материала входит натуральный или синтетический каучук (30-75) частей по массе, порошок железа, его магнитный оксид или феррит (10-40) частей по массе, а остальное пластификатор, смешивающий агент и другие примеси. Материал обладает способностью закономерно изменять размеры и форму под воздействием магнитного поля. Недостатки этого материала следующие: низкое значение начальной и максимальной магнитной проницаемости, а также намагниченности и остаточной индукции, наличие микроструктурных, а также фазовых неоднородностей и, как следствие, неоднородности по свойствам в различных микрозонах, обуславливающих рассеяние магнитного поля.

Технический результат, обусловленный использованием предлагаемого изобретения, состоит в получении гибкого магнитомягкого материала с повышенными магнитными характеристиками и возможностью управления этими характеристиками материала посредством внешнего магнитного поля, обусловив, например, экранирование внешнего сверхвысокочастотного электромагнитного излучения в режиме ферромагнитного резонанса.

Данный технический результат достигается за счет того, что магнитомягкая ткань, содержащая полимерную основу и порошок магнитомягкого материала, согласно изобретению образована смесью порошков из магнитомягкого сплава альсифер с размером частиц 5...10 мкм и магнитомягкого феррита с размером частиц 50...100 мкм, а основа выполнена из нитей лавсана, при следующем соотношении компонентов ткани, мас.%:

нити лавсана30...20
связующий полимер15...20
порошок магнитомягкого феррита15...20
порошок сплава альсифер30...50

Сплав альсифер обладает высоким значением магнитной проницаемости, например максимальное значение μmax у этого сплава с оптимальным содержанием кремния, алюминия и железа может достигать уникально большого значения - 3800000. Начальная магнитная проницаемость μ этого сплава равна 35000. Повышенное значение μ. обуславливает более высокие экранирующие способности материала. Удельное электрическое сопротивление ρ сплава альсифер примерно в 1,5 раза выше по сравнению с ρ электротехнических сталей и пермаллоев, а это значит, что наличие порошка этого сплава способствует возрастанию глубины проникновения электромагнитного поля в материал и объема материала, участвующего в поглощении излучения. Магнитомягким ферритам, например марганцево-цинковому, тоже характерны большие значения магнитной проницаемости. Наряду с высокими характеристиками магнитных свойств ферриты являются полупроводниками по электропроводности, их удельное электрическое сопротивление примерно на четыре порядка превышает ρ таких магнитомягких материалов, как электротехнические стали и пермаллои. В зонах расположения частиц феррита падающее электромагнитное излучение проникает на сравнительно большую глубину в материал. При этом в процесс поглощения и рассеяния внешнего излучения вовлекаются частички альсифера не только на поверхности, но и во внутренних зонах материала. Глубина же проникновения сверхвысокочастотных излучений в материал, со значением ρ характерных для всех магнитомягких материалов, кроме ферритов, составляет менее 1 мкм. Изменяя величину и направление внутреннего магнитного поля путем использования порошка с разным размером частиц, а также путем формирования анизотропной структуры и варьируя величину, а также направление внешнего постоянного магнитного поля, можно изменять частоту и ширину спектра поглощения внешнего излучения в феррорезонансном режиме. В отличие от большинства магнитомягких материалов альсифер и магнитомягкие ферриты при комнатной температуре находятся в хрупком состоянии поэтому из них легко можно получить порошок, который в комплексе с полимером технологически просто наносится на поверхность ткани. Размер частиц сплава альсифер составляет (5-10) мкм, что эффективно экранирует внешнее излучение, например, за счет появления вихревых токов и феррорезонансного поглощения. Размер же частиц феррита равен (100-300) мкм, что обуславливает проникновение излучения во внутреннюю зону материала и вовлечение в процесс экранирования излучения практически всего объема предлагаемой магнитомягкой ткани. Отличие размеров частиц альсифера и феррита позволяет сформировать на поверхности ткани плотный слой магнитомягкого ферромагнитного материала

Примеры конкретного осуществления

Пример 1.

Получена ферромагнитная ткань, матрицей которой является ткань полотняного переплетения, изготовленная из лавсана по традиционной текстильной технологии. Линейная плотность нитей основы и утка составляла 40 текс. Плотность укладки основных и уточных нитей равна 1500 на один метр. В качестве магнитомягкого наполнителя выбрана смесь порошков сплава альсифер с размером частиц 5...10 мкм и марганцево-цинкового феррита с размером частиц 50...100 мкм.

Содержание компонентов ткани, мас.%:

нити лавсана20
связующий полимер15
порошок марганцево-цинкового феррита15
порошок сплава альсифер50

Полученная ткань превосходит прототип по значению (см. таблицу): начальной магнитной проницаемости в 8 раз, показателю экранирования электромагнитного излучения при частоте 109...1010 Гц в 8,6 раз, сопротивления распространению трещины и гибкости в 2,2...2,4 раз.

Пример 2.

Изготовлена ткань, основа которой была изготовлена из нитей лавсана, как и в случае примера 1. Содержание компонентов было таким, мас.%: нити лавсана 30%; связующий полимер 20%; порошок Mn-Zn-феррита 20%, порошок сплава альсифер 40%. Как видно из таблицы, снижение содержания порошка сплава альсифер и сравнение с примером 1 не привело к существенным изменениям свойств полученной ткани.

Пример 3.

В этом варианте ткани, по сравнению с примером 2, более высокое содержание магнитомягких материалов при пониженном содержании лавсана и связующего полимера. Это обусловило снижение гибкости и прочности при наличии надрыва, но позволило повысить начальную магнитную проницаемость и показатель экранирования электромагнитного излучения (см. таблицу).

Содержание магнитомягких порошков выбирают в зависимости от функционального предназначения ткани. Количество связующего полимера выбирают таким, чтобы обеспечить сцепление порошка с тканью, долю нитей лавсана определяют, исходя из необходимости достижения соответствующей «емкости» ткани по количеству вводимого порошка.

Источники информации

1. ЕПВ 0225392, H 01 F 1/02, опубл. 16.06.87.

2. Патент Российской Федерации 2157013, 7 P 01 F 1/113, опубл. 27.09.2000.

Таблица
Характеристики испытанных магнитомягких материалов
ВариантСодержание компонентов, мас.%Прочность полоски шириной 50 мм, с надрезом 5 мм, ННачальное значение магнитной проницаемостиОтносит. удлинение полоски шириной 50 мм перед разрушением, %Показатель гибкости, отн.ед.Показатель экранирования электромагнитного излучения
Нити лавсанаСвязующий полиамидПорошок Mn-Zn-ферритаПорошок сплава альсифер
Прототип28036007,911
Пример 1201515506102930013,82,48,6
Пример 2302020309202140016,23,98,1
Пример 3251520407052860014,63,29,8

Магнитомягкая ткань, содержащая полимерную основу и порошок магнитомягкого материала, отличающаяся тем, что в качестве магнитомягкого материала используют смесь порошков из сплава альсифер с размером частиц 5÷10 мкм и магнитомягкого феррита с размером частиц 50÷100 мкм со связующим полимером, а основа выполнена из нитей лавсана, при этом соотношение компонентов ткани по массе следующее, %:

Нити лавсана30÷20
Связующий полимер15÷20
Порошок магнитомягкого феррита15÷20
Порошок сплава альсифер30÷50



 

Похожие патенты:

Изобретение относится к защитному устройству для защиты электрического соединителя от электромагнитных помех. .

Изобретение относится к области радиотехники и может быть использовано при реализации систем радиосвязи, управления и в средствах вычислительной техники. .

Изобретение относится к области защитных радиоэлектронных средств и может быть использовано в качестве экрана. .

Изобретение относится к средствам защиты биологических объектов от воздействия электромагнитного излучения и может быть применено в технике, медицине и быту в качестве прозрачных экранов, позволяющих наблюдать за процессами, где используется электромагнитное излучение, в виде масок на лицо, пленок на дверцы СВЧ-печек и т.

Изобретение относится к радиотехнике и может быть использовано при конструировании радиоэлектронных блоков, в которых осуществляется аналоговая и цифровая обработка радиосигналов.

Изобретение относится к радиотехнике и может быть использовано при конструировании радиоэлектронных блоков, в которых осуществляется аналоговая и цифровая обработка радиосигналов.
Изобретение относится к периферийным устройствам, используемым в компьютерной технике. .
Изобретение относится к материалам, предназначенным для защиты человека в производственных, административных и жилых помещениях от воздействия электромагнитных полей радиочастотного диапазона, возникающих от работы электросетей, электроприборов, при эксплуатации мобильных и радиотелефонов, а также для защиты человека от геопатогенного воздействия окружающей среды.

Изобретение относится к лицевому элементу для вставляемых в несущий каркас вставных блоков с электромагнитным экранированием. .

Изобретение относится к электромагнитной защите электронных печатных плат радиоэлектронного оборудования. .
Изобретение относится к текстильным материалам и может быть использовано в магнитных системах для защиты объектов от радиоактивного излучения, а также для активизации биологических процессов в живых организмах.
Изобретение относится к текстильным материалам и может быть использовано в магнитных системах для защиты объектов от радиоактивного излучения, а также для активизации биологических процессов в живых организмах.
Изобретение относится к текстильным материалам и может быть использовано для изготовления магнитных систем, а также в качестве защиты от радиоактивного излучения.
Изобретение относится к текстильным материалам и может быть использовано для изготовления магнитных систем, а также в качестве защиты от радиоактивного излучения.
Изобретение относится к области металлургии, а именно к обработке магнитотвердых сплавов на основе системы железо-хром-кобальт. .
Изобретение относится к области порошковой металлургии, в частности, к магнитным материалам для постоянных магнитов на основе редкоземельных элементов с металлами группы железа.
Изобретение относится к области металлургии и касается получения микрокристаллической магнитострикционной ленты из сплава на основе системы железа - алюминия. .

Изобретение относится к области получения магнитных жидкостей, а также к области синтеза основного компонента магнитной жидкости феррофазы (высокодисперсного магнетита) из отходов травильного и гальванического производства.

Изобретение относится к области металлургии, а именно к магнитным материалам, в частности к использованию осевой симметрии для задания магнитных свойств материалам.

Изобретение относится к металлургии прецизионных сплавов на основе кобальта, которые могут применяться для изготовления высокопрочных аморфных материалов в виде лент с высоким значением магнитной проницаемости.
Изобретение относится к текстильным материалам и может быть использовано в магнитных системах для защиты объектов от радиоактивного излучения, а также для активизации биологических процессов в живых организмах.
Наверх