Способ изготовления композитных проводов



Способ изготовления композитных проводов
Способ изготовления композитных проводов

Владельцы патента RU 2285966:

Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт неорганических материалов им. акад. А.А. Бочвара" (RU)
Открытое акционерное общество "Чепецкий механический завод" (RU)
Российская Федерация в лице Федерального агентства по атомной энергии (RU)

Изобретение относится к области электротехники и может быть использовано в устройствах, предназначенных для работы при температурах жидкого гелия. Техническая задача настоящего изобретения заключается в обеспечении горячего уплотнения композитной заготовки перед экструзией, не связанного с дополнительным временем нагрева. Для решения технической задачи способ изготовления композитных проводов включает формирование первичной композитной заготовки, содержащей наружную оболочку и осевой цилиндрической блок, герметизацию первичной композитной заготовки, обжатие, экструзию и последующую деформацию до получения прутка заданной формы и размера, резку прутка на мерные длины, формирование вторичной композитной заготовки путем сборки прутков в наружную оболочку, герметизацию вторичной композитной заготовки, обжатие, экструзию и последующую деформацию до конечного размера провода, причем обжатие композитной заготовки осуществляют путем запрессовки в контейнер перед экструзией, при этом суммарная площадь элементов композитной заготовки в ее поперечном сечении составляет 95-99% от площади поперечного сечения внутреннего пространства втулки контейнера, а заходная часть наружной оболочки композитной заготовки выполнена в виде переходной зоны, состоящей из цилиндрической части с наружным диаметром, меньшим внутреннего диаметра втулки контейнера, и конусной части, причем объем пустот внутри композитной заготовки составляет 1-17% от объема внутреннего пространства наружной оболочки. 5 з.п. ф-лы, 2 ил.

 

Изобретение относится к области электротехники и может быть использовано в устройствах, предназначенных для работы при температурах жидкого гелия.

Известен способ изготовления композитных проводов, включающий формирование первичной композитной заготовки, содержащей наружную оболочку и осевой цилиндрический блок из пластичных материалов, герметизацию и вакуумирование первичной композитной заготовки, экструзию и последующую деформацию до получения прутка заданной формы и размера, резку прутка на мерные длины, формирование вторичной композитной заготовки путем сборки нарезанных прутков в наружную оболочку из пластичного материала, герметизацию и вакуумирование вторичной композитной заготовки, экструзию и последующую деформацию до конечного размера провода, причем экструзию композитных заготовок проводят без предварительного обжатия заготовок /1/.

Указанным способом получают биметаллические или триметаллические провода, а также многоволоконные провода с незначительным количеством волокон (обычно не более 200-300). Для получения большего количества волокон в композитном проводе операцию сборки композитной заготовки повторяют необходимое количество раз. Однако увеличение количества операций сборки и соответственно количества экструзий композитных заготовок при повышенных температурах приводит к заметному снижению как эксплуатационных характеристик провода, так и выхода в годное.

Увеличение количества прутков в одной композитной заготовке связано с уменьшением их размера и, как следствие, с повышением сложности их формирования в единый пучок и, как правило, с увеличением количества пустот. Пустоты присутствуют как внутри чехла, так и между композитной заготовкой и внутренней поверхностью втулки контейнера, в который та помещается. Начальная стадия деформации прессованием - распрессовка, в процессе которой в направлениях наименьшего сопротивления заготовка под влиянием силового воздействия пуансона уширяется и осаживается. При значении соотношения длины и поперечного сечения отдельно взятого прутка, значительно превышающим оптимальное, в отсутствие надежного контакта элементов как между собой, так и контакта элементов с чехлом, деформация почти аналогична продольному изгибу, что приводит к потере пластической устойчивости при деформации в матрице контейнера. Эта тенденция усиливается со снижением поперечного размера последних.

Известен способ изготовления композитных проводов, выбранный в качестве прототипа /2/, включающий формирование первичной композитной заготовки, содержащей наружную оболочку и осевой цилиндрический блок из пластичных материалов, герметизацию и вакуумирование первичной композитной заготовки, обжатие, экструзию и последующую деформацию до получения прутка заданной формы и размера, резку прутка на мерные части, формирование вторичной композитной заготовки путем сборки нарезанных прутков в наружную оболочку из пластичного материала, герметизацию и вакуумирование вторичной композитной заготовки, обжатие, экструзию и последующую деформацию до конечного размера провода, причем экструзию композитных заготовок проводят после предварительного горячего изостатического обжатия заготовок.

Изложенный способ изготовления позволяет получать качественные композитные провода с количеством волокон от 1000 и выше, а ограничением могут служить лишь возможности сборки такого количества прутков малого поперечного сечения. Смысл операции состоит в устранении пустот, возникающих при сборке составных заготовок. Устранение пустот в предварительно вакуумированных заготовках достигается за счет течения материала оболочки в условиях всестороннего сжатия в радиальном направлении. При этом необходимо, чтобы течение оболочки, например, из меди или сплава на основе меди не вызывало деформации арматуры, например, из ниобий-титанового сплава или ниобия. Последнее возможно, когда сопротивление деформации материала оболочки будет много меньше сопротивления деформации ниобий-титановых или ниобиевых стержней как в продольном по отношению к оси заготовки, так и в поперечном направлениях.

Однако максимальное отношение пределов текучести ниобий-титанового сплава или ниобия по отношению к меди или сплаву на основе меди можно получить при повышении температуры. Оптимальная температура обжатия находится в интервале температур от 550 до 650°С. Учитывая инерционность прогрева составной заготовки и растянутость во времени течения материала оболочки, время нахождения композитной заготовки при повышенных температурах может достигать нескольких часов. В этих условиях, несмотря на наличие диффузионного ниобиевого барьера, для сверхпроводников на основе ниобий-титанового сплава увеличивается возможность диффузионного взаимодействия между медью и сплавом, а для проводов на основе соединения типа А15 возникают условия преждевременного образования хрупкого соединения Nb3Sn, что в значительной мере ухудшает пластичность композитного материала и качество композитного провода.

Другим недостатком указанного способа изготовления композитных проводников является возможность получения разнотолщинности оболочки прессованного прутка. Процесс экструзии композитных заготовок вышеуказанным способом построен так, что размеры поперечного сечения обжатой заготовки предполагают ее помещение в контейнер пресса с некоторым зазором, что приводит к смещению центра последней по отношению к контейнеру пресса, а захоложенная оболочка в месте контакта с прессом приводит к неравномерной распрессовке.

Техническая задача настоящего изобретения заключается в обеспечении горячего уплотнения композитной заготовки перед экструзией, не связанного с дополнительным временем нагрева.

Поставленная задача решается так, что если в известном способе изготовления композитных проводов, включающего формирование первичной композитной заготовки, содержащей наружную оболочку и осевой цилиндрический блок из пластичных материалов, герметизацию и вакуумирование первичной композитной заготовки, обжатие, экструзию и последующую деформацию до получения прутка заданной формы и размера, резку прутка на мерные длины, формирование вторичной композитной заготовки путем сборки нарезанных прутков в наружную оболочку из пластичного материала, герметизацию и вакуумирование вторичной композитной заготовки, обжатие, экструзию и последующую деформацию до конечного размера провода, экструзию композитных заготовок проводят после предварительного горячего изостатического обжатия заготовок, то в предлагаемом способе обжатие композитных заготовок осуществляют путем запрессовки в контейнер перед экструзией, при этом суммарная площадь элементов композитной заготовки в ее поперечном сечении составляет 95-99% от площади поперечного сечения внутреннего пространства втулки контейнера, а заходная часть наружной оболочки композитной заготовки выполнена в виде переходной зоны, состоящей из цилиндрической части с наружным диаметром, меньшим внутреннего диаметра втулки контейнера, и конусной части, причем объем пустот внутри композитной заготовки составляет 1-17% от объема внутреннего пространства наружной оболочки.

В частном случае реализации изобретения в качестве материала наружной оболочки композитной заготовки используют медь, а в качестве осевого цилиндрического блока NbTi сплав.

В другом частном случае реализации изобретения в качестве материала наружной оболочки композитной заготовки используют сплав на основе меди, а в качестве осевого цилиндрического блока NbTi сплав.

В другом частном случае реализации изобретения в качестве материала наружной оболочки композитной заготовки используют медь, а в качестве осевого цилиндрического блока ниобий.

В другом частном случае реализации изобретения в качестве материала наружной оболочки композитной заготовки используют сплав на основе меди, а в качестве осевого цилиндрического блока ниобий.

В другом частном случае реализации изобретения между материалом наружной оболочки композитной заготовки и осевым цилиндрическим блоком помещают втулку из ниобия.

Предлагаемая схема обжатия композитных заготовок включает следующую последовательность операций: загрузка в печь и нагрев композитной заготовки, выгрузка из печи и транспортировка к прессу, обжатие путем запрессовки в контейнер, выдавливание. Нагретая заготовка имеет размеры поперечного сечения, превышающие размеры внутреннего сечения втулки контейнера пресса на величину пустот, образовавшихся при сборке композита. Наружный диаметр рассчитывается таким образом, чтобы поперечное сечение составной заготовки составляло от 95 до 99% сечения контейнера. Нижний предел объема заготовки определяет устойчивый процесс распрессовки и прессования без потери устойчивости прутков. Верхний предел объема заготовки определяет радиальную деформацию оболочки в отсутствии продольной и гарантирует от переполнения контейнера.

Исходный объем пустот внутри композитной заготовки составляет 1-17% от объема внутреннего пространства наружной оболочки. Нижний предел определяет отсутствие необходимости в обжатии заготовки, а верхний предел определяет возможность равномерного обжатия всех составляющих заготовки.

Для равномерного помещения в контейнер пресса заходной конец композитной заготовки выполняют в виде комбинации цилиндрической части с наружным диаметром, меньшим внутреннего диаметра втулки контейнера, и конусной части, высота которой может составлять от 10 до 70 мм, в зависимости от конструкции заготовки. Высота цилиндрической части определяется конструкцией пресса. Так, для горизонтальных прессов она минимальна и составляет высоту крышки, а для вертикальных прессов в случае крупных заготовок для надежной центровки она составляет заметную часть, но при этом объем этой цилиндрической части не превышает объема обрезной части переднего конца прессованного прутка.

Примеры конкретного выполнения

На фиг.1 представлены поперечное сечение триметаллической заготовки и фрагмент продольного сечения наружной оболочки. Сборка композитной заготовки выполнена путем помещения в наружную медную оболочку (1) прутка из NbTi сплава (2) и промежуточного диффузионного ниобиевого барьера (3). Наружная часть заходного конца наружной оболочки выполнена в виде комбинации цилиндрической (4) и конусной (5) частей. Площадь поперечного сечения исходных элементов композитной заготовки составляет 98,4% от площади поперечного сечения внутреннего пространства втулки контейнера (диаметр 95,0 мм). Объем пустот внутри чехла (наружной оболочки) после помещения стержня и барьера составил 2,8%.

На фиг.2 представлены поперечное сечение многоволоконной заготовки и фрагмент продольного сечения наружной оболочки. Сборка композитной заготовки из 2346 волокон (6) с центральным медным сердечником (7) осуществлена в оболочку (8), наружная часть заходного конца которой выполнена в виде комбинации цилиндрической (9) и конусной (10) частей. Композитная заготовка предназначена для выдавливания на вертикальном прессе из контейнера диаметром 130 мм, поэтому для фиксации крупной заготовки внутри втулки контейнера цилиндрическая часть выполнена удлиненной. Площадь поперечного сечения исходных элементов композитной заготовки составляет 97,5% от площади поперечного сечения внутреннего пространства втулки контейнера. Объем пустот внутри чехла (наружной оболочки) после помещения всех конструкционных элементов составил 12,0%.

Технический результат предложенного способа изготовления композитных проводов заключается в повышении их качества.

Источники информации

1. "Металловедение и технология сверхпроводящих материалов". Под ред. Фонера С., Шварца Б., США, 1981; Пер. с англ. М.: "Металлургия", 1987, стр.252-254, стр.317.

2. John D.Scudlere and Michael F.Murphy. SSC superconductor fabrication, Wire Journal International, Vol.25, No.1, 1992, pp 71-72.

1. Способ изготовления композитных проводов, включающий формирование первичной композитной заготовки, содержащей наружную оболочку и осевой цилиндрический блок, герметизацию первичной композитной заготовки, обжатие, экструзию и последующую деформацию до получения прутка заданной формы и размера, резку прутка на мерные длины, формирование вторичной композитной заготовки путем сборки нарезанных прутков в наружную оболочку, герметизацию вторичной композитной заготовки, обжатие, экструзию и последующую деформацию до конечного размера провода, отличающийся тем, что обжатие композитных заготовок осуществляют путем запрессовки в контейнер перед экструзией, при этом суммарная площадь элементов композитной заготовки в ее поперечном сечении составляет 95-99% от площади поперечного сечения внутреннего пространства втулки контейнера, а заходная часть наружной оболочки композитной заготовки выполнена в виде переходной зоны, состоящей из цилиндрической части с наружным диаметром, меньшим внутреннего диаметра втулки контейнера, и конусной части, причем объем пустот внутри композитной заготовки составляет 1-17% от объема внутреннего пространства наружной оболочки.

2. Способ по п.1, отличающийся тем, что в качестве материала наружной оболочки композитной заготовки используют медь, а в качестве осевого цилиндрического блока NbTi сплав.

3. Способ по п.1, отличающийся тем, что в качестве материала наружной оболочки композитной заготовки используют сплав на основе меди, а в качестве осевого цилиндрического блока NbTi сплав.

4. Способ по п.1, отличающийся тем, что в качестве материала наружной оболочки композитной заготовки используют медь, а в качестве осевого цилиндрического блока ниобий.

5. Способ по п.1, отличающийся тем, что в качестве материала наружной оболочки композитной заготовки используют сплавы на основе меди, а в качестве осевого цилиндрического блока ниобий.

6. Способ по любому из пп.2 и 3, отличающийся тем, что между материалом наружной оболочки композитной заготовки и осевым цилиндрическим блоком помещают втулку из ниобия.



 

Похожие патенты:

Изобретение относится к высоковольтной изоляции. .
Изобретение относится к области технической сверхпроводимости, в частности к технологии получения длинномерных композиционных многожильных проводов на основе высокотемпературных сверхпроводящих (ВТСП) соединений, предназначенных для создания электротехнических изделий.
Изобретение относится к области технической сверхпроводимости, в частности к технологии получения длинномерных композиционных многожильных проводов на основе высокотемпературных сверхпроводящих (ВТСП) соединений, предназначенных для создания электротехнических изделий.

Изобретение относится к области прикладной сверхпроводимости и может быть использовано для изготовления сверхпроводников при сильно механически нагруженных сверхпроводящих обмоток (с напряжением проводника больше 100 МПа при работе), а также для сверхпроводящих обмоток и устройств, работающих в переменных режимах, например сверхпроводящих индуктивных накопителей энергии, дипольных и квадрупольных магнитов для ускорителей заряженных частиц.
Изобретение относится к области электротехники, в частности к технологии получения длинномерных проводов на основе сверхпроводящих соединений. .
Изобретение относится к области электротехники, в частности к сверхпроводимости, и может быть использовано для усовершенствования технологий получения сверхпроводящих проводников.

Изобретение относится к получению сверхпроводящих материалов и может быть использовано в электротехнической промышленности и других отраслях науки и техники при изготовлении сверхпроводящих магнитных систем различного назначения.

Изобретение относится к технике, а именно к материалам с высокой проводимостью, способам их обработки. .
Изобретение относится к области электротехники, в частности к технологии получения выскотемпературных сверхпроводящих изделий. .

Изобретение относится к электротехнике и может быть использовано в производстве обмоток высокопольных импульсных магнитов, а также для тяжелонагруженных линий электропередач.
Изобретение относится к области электротехники, в частности к способу получения высокотемпературных сверхпроводников на основе диборида магния, включающий формирование полой металлической ампулы, заполнение ампулы порошком, представляющим собой смесь стехиометричного состава, состоящую из порошка гомогенного гранулированного магния с очищенной пассивированной поверхностью, полученного центробежным распылением расплава магния, нагретого до температуры 650-850°С, из тигля, вращающегося со скоростью 1000-6000 оборотов в минуту, с кристаллизацией распыленного магния в атмосфере гелия и порошка аморфного бора, деформирование полученного ампульно-порошкового элемента экструзией при температуре 450-500°С и величине коэффициента вытяжки 3-6 с последующим волочением со степенью деформации за проход 5-10%, термообработку при температуре 800-900°С, в течение 1-10 часов в вакууме или в аргоне

Изобретение относится к области электрохимии, в частности к способу сборки композитной заготовки для изготовления многоволоконного провода (варианты), который предусматривает заполнение цилиндрического чехла технологическими элементами, которые затем удаляют из чехла и заменяют прутками, каждый из которых состоит из отдельных стержней, уложенных в определенном порядке, обеспечивающем максимальную плотность заполнения, при этом сечение каждого из технологических элементов отличается от сечения замещающего его прутка, центральный технологический элемент имеет правильную гексагональную форму с шириной грани А1, величину которой определяют из выражения где а - ширина грани гексагонального стержня, М - количество стержней в диаметральном направлении, второй ряд, окружающий центральный элемент, заполняют попеременно технологическими элементами, три из которых имеют правильную гексагональную форму с шириной грани А2, определяемой из выражения а три других технологических элемента имеют гексагональную форму, ширина граней которых последовательно равна все последующие ряды заполняют попеременно технологическими элементами, имеющими гексагональную форму, ширина граней которых равна последовательно , а оставшееся свободное пространство между гексагональными технологическими элементами и цилиндрическим чехлом заполняют дополнительными технологическими элементами с формой поперечного сечения, обеспечивающей максимальное заполнение чехла

Изобретение относится к области электротехники, в частности к сверхпроводящему устройству, которое имеет оксидный сверхпроводящий провод

Изобретение относится к конструкциям концевой заделки сверхпроводящего кабеля

Изобретение относится к области электротехники, в частности к изготовлению сверхпроводников из сплава NbTi из стержнеобразного полуфабриката путем холодной пластической деформации

Изобретение относится к области электротехники, к сверхпроводящим кабелям с криогенной оболочкой, в частности к способу изготовления сверхпроводящего кабеля, состоящего из кабельного сердечника, содержащего, по меньшей мере, один удлиненный сверхпроводящий элемент, и охватывающей кабельный сердечник гибкой трубы, включающий в себя следующие этапы: а) непрерывную размотку кабельного сердечника с источника кабеля; б) непрерывную размотку металлической ленты с источника ленты; в) непрерывное формование металлической ленты вокруг кабельного сердечника в трубную заготовку, заварку продольного шва и последующее гофрирование заваренной трубы, причем внутренний диаметр гофрированной трубы больше наружного диаметра кабельного сердечника; г) намотку состоящего из кабельного сердечника и гофрированной трубы сверхпроводящего кабеля на кабельный барабан или укладку сверхпроводящего кабеля в, по меньшей мере, один виток; д) завершающее механическое соединение концов кабельного сердечника с концами гофрированной трубы в то время, как кабель находится на кабельном барабане или в виде, по меньшей мере, одного витка

Изобретение относится к области электротехники, в частности к сверхпроводящим проводам и способам их получения

Изобретение относится к области электротехники, а именно к сверхпроводящим многожильным ленточным проводам для переменных и постоянных токов, и может быть использовано в криогенной электротехнике

Изобретение относится к области электротехники, в частности к сверхпроводящему тонкопленочному материалу, сверхпроводящему проводу и способу их изготовления
Наверх