Способ получения электроизоляционного масла

Изобретение относится к области нефтепереработки и касается способа получения электроизоляционного масла, предназначенного для использования в качестве теплоотводящей и электроизолирующей среды в маслонаполненном оборудовании: трансформаторах, конденсаторах, кабелях и т.д. Сущность: нефтяную фракцию с температурой начала кипения не менее 270°С при разнице температур начала кипения и конца кипения около 65-70°С подвергают селективной очистке N-метилпирролидоном при кратности сырье : растворитель = 1 : не менее 3,7 с последующей депарафинизацией полученного рафината и адсорбционной доочисткой депарафинированного масла. В подготовленную основу вводят присадки в следующих количествах в расчете на масло, мас.%: 2,6-ди-трет-бутил-4-метилфенол 0,2-0,7 и 1-(диэтиламинометил)бензотриазол 0,003-0,1. Адсорбционную доочистку нефтяной фракции предпочтительно осуществляют землей до достижения значения тангенса угла диэлектрических потерь при 90°С не более 0,5%. Технический результат - повышение стабильности электрических характеристик масла. 1 з.п. ф-лы, 1 табл.

 

Изобретение относится к области нефтепереработки, конкретно к способу получения электроизоляционного масла, предназначенного для использования в качестве теплоотводящей и электроизолирующей среды в маслонаполненном оборудовании: трансформаторах, конденсаторах, кабелях и т.д.

Известно, что для получения электроизоляционного масла с повышенной стабильностью тангенса угла диэлектрических потерь в нефтяные дистилляты вводят различные присадки.

Так, известен способ получения электроизоляционного масла путем введения в нефтяное масло 0,2-0,5 мас.% 2,6-ди-трет-бутил-4-метилфенола (ионола) (Химия и технология топлив и масел, 1972 г., №12, с.18-22).

Кроме ионола в нефтяное масло вводят также хинизарин в количестве 0,01-0,1 мас.% (авторское свидетельство СССР №609761, С 10 М, 1978 г.).

Однако у известного масла при длительном окислении в присутствии электрического поля значительно увеличиваются значения тангенса угла диэлектрических потерь, что ухудшает его эксплуатационные характеристики.

Одним из путей улучшения эксплуатационных характеристик электроизоляционного масла является подготовка основы масла перед введением в нее специально подобранных присадок.

Наиболее близким к заявляемому техническому решению является способ получения электроизоляционного масла путем фенольной очистки дистиллята малосернистой парафинистой нефти, депарафинизации полученного рафината и контактной доочистки депарафинированного масла с последующим введением в подготовленную основу 0,1-0,5 мас.% 2,6-ди-трет-бутил-4-метилфенола и 0,002-0,1 мас.% 1-(диэтиламинометил)бензотриазола.

Однако известный способ не позволяет получить электроизоляционное масло требуемого уровня качества при использовании в качестве сырья сернистых парафинистых нефтей.

Задачей настоящего изобретения является разработка способа получения электроизоляционного масла, позволяющего повысить стабильность тангенса угла диэлектрических потерь.

Для решения поставленной задачи предлагается способ получения электроизоляционного масла путем селективной очистки нефтяного дистиллята N-метилпирролидоном при кратности сырье : растворитель = 1 : не менее 3,7 нефтяной фракции с температурой начала кипения не менее 270°С при разнице температур между началом кипения и концом кипения около 65-70°С, депарафинизации полученного рафината, адсорбционной доочистки депарафинированного масла с последующим введением в подготовленную основу 0,2-0,7 мас.% 2,6-ди-трет-бутил-4-метилфенола и 0,003-0,1 мас.% 1-(диэтиламинометил)бензотриазола.

Причем адсорбционную доочистку депарафинированного масла осуществляют землей до достижения значения тангенса угла диэлектрических потерь при 90°С не более 0,5%.

Отличия заявляемого технического решения состоят в том, что для получения электроизоляционного масла используют специально подобранную узкую нефтяную фракцию, селективную очистку этой фракции осуществляют не фенолом, а N-метилпирролидоном при повышенной кратности растворителя к сырью, присадки вводят в подготовленную основу в заявленном количестве.

Указанные отличия позволяют повысить восприимчивость основы масла к присадкам, к их антиокислительному действию, что в конечном счете обеспечивает стабильность основного показателя качества - тангенса угла диэлектрических потерь.

Ниже приводятся примеры осуществления предлагаемого способа.

Пример 1.

Дистиллятную фракцию из смеси сернистых парафинистых нефтей с содержанием серы 0,98%, выкипающую в интервале 270-340°С, подвергают селективной очистке N-метилпирролидоном с получением рафината при соотношении сырья и растворителя (объемном) 1:5,0. Рафинат подвергают низкотемпературной депарафинизации в растворе смеси кетонов и толуола в соотношении 50:50 при температуре минус 55°С. Депарафинированное масло сушат при температуре 130°С и вакууме глубже 550 мм рт.ст. Осушенный продукт подвергают адсорбционной доочистке 1 мас.% активированной отбеливающей глины при температуре 100°С.

Подготовленная основа масла имеет следующие характеристики:

Вязкость кинематическая при 40°С, мм211,0
Массовая доля серы, %0,3
Температура застывания,°С-45
Тангенс угла диэлектрических потерь при 90°С0,5

В подготовленную основу вводят:

2,6-ди-трет-бутил-4-метилфенол0,4%
1-(диэтиламинометил)бензотриазол0,03%

Пример 2.

Способ осуществляют в условиях примера 1 с изменением концентрации присадок:

2,6-ди-трет-бутил-4-метилфенол0,3%
1-(диэтиламинометил)бензотриазол0,05%

Пример 3.

Способ осуществляют в условиях примера 1, но с использованием в качестве адсорбента 10% природной земли Зикеевского месторождения и изменением концентрации присадок:

2,6-ди-трет-бутил-4-метилфенол0,5%
1-(диэтиламинометил)бензотриазол0,07%

Полученные предлагаемым способом образцы электроизоляционного масла были испытаны по методике, предложенной М.И.Шахновичем (метод ВЭИ), согласно которой старение масла проводится с приложением электрического поля напряженностью 5 кВ/мм при температуре 95°С и свободном доступе воздуха к поверхности масла.

Результаты испытаний приготовленных образцов приведены в таблице.

Данные, приведенные в таблице, подтверждают, что предлагаемый способ позволяет улучшить эксплуатационные характеристики масла - стабильность тангенса угла диэлектрических потерь.

Результаты испытаний опытных образцов электроизоляционного масла, полученных предлагаемым способом (95°С, кВ/мм, свободный доступ воздуха к поверхности масла)
Длительность старения, часОпытные образцы масла
ПоказателиФенольной очистки из сернистых нефтей по ГОСТ 10121-76Пример

1
Пример

2
Пример

3
Кислотное число,
мг КОН/г0,0050,000,000,00
200
tgδ при 70°С, %8,00,90,50,7
Кислотное число,
мг КОН/г0,080,040,030,04
400
tgδ при 70°С, %9,11,71,21,5
Кислотное число,
мг КОН/г0,150,100,080,09
600
tgδ при 70°С, %12,62,11,82,0
Кислотное число,
мг КОН/г0,20,150,130,14
800
tgδ при70°С, %15,463,832,63,4
Кислотное число, мг КОН/г0,280,250,240,25
1000
tgδ при 70°С, %22,84,113,33,8
Осадок, %0,0530,0270,0110,025

1. Способ получения электроизоляционного масла путем селективной очистки нефтяного дистиллята, депарафинизации полученного рафината, адсорбционной доочистки депарафинированного масла с последующим введением в подготовленную основу 2,6-ди-трет-бутил-4-метилфенола и 1-(диэтиламинометил)бензотриазола, отличающийся тем, что в качестве нефтяного дистиллята используют фракцию с температурой начала кипения не менее 270°С при разнице температур начала кипения и конца кипения около 65-70°С, селективную очистку этой фракции осуществляют N-метилпирролидоном при кратности сырье : растворитель, равной 1 : не менее 3,7, и присадки вводят в следующих количествах в расчете на масло, мас.%: 2,6-ди-трет-бутил-4-метилфенол 0,2-0,7 и 1-(диэтиламинометил)бензотриазол 0,003-0,1.

2. Способ по п.1, отличающийся тем, что адсорбционную доочистку нефтяной фракции осуществляют землей до достижения значения тангенса угла диэлектрических потерь при 90°С не более 0,5%.



 

Похожие патенты:
Изобретение относится к консервационно-технологическим смазочным материалам (КТСМ) и предназначено как для консервации листового и профильного проката, труб, оборудования и запасных частей, так и для использования в качестве технологического смазочного материала для лезвийной обработки и обработки металлов давлением.

Изобретение относится к области нефтепереработки и нефтехимии, а именно к смазочным материалам, представляющим собой пленкообразующие ингибированные составы, предназначенные для консервации металлоконструкций из черных и цветных металлов авиационной, космической, автомобильной и сельскохозяйственной техники.

Изобретение относится к пластичным смазочным материалам и может использоваться в машинах и механизмах, шарнирно-болтовых сочленениях, подшипниках качения и скольжения, зубчатых передачах и других тяжелонагруженных узлах трения.

Изобретение относится к нефтехимическим, в частности к материалам, предназначенным для защиты от коррозии труднодоступных частей и полостей металлоконструкций и автомобилей.

Изобретение относится к составу высококачественных масел, предназначенных для смазки и охлаждения перспективных газотурбинных двигателей в составе авиационных и судовых приводов газоперекачивающих агрегатов.

Изобретение относится к нефтехимии, в частности к составу высококачественных масел, предназначенных для смазки и охлаждения перспективных газотурбинных двигателей (ГТД) в составе авиационных и судовых приводов газоперекачивающих агрегатов (ГПА).

Изобретение относится к защитным консервационным материалам для противокоррозионной защиты металлических изделий от воздействия окружающей среды. .
Изобретение относится к электроизоляционным маслам, применяемым для изоляции электрических двигателей погружных насосов, используемых при нефтедобыче. .
Изобретение относится к области нефтехимии и авиационной технике, конкретно к моторно-редукторному маслу, предназначенному для работы в теплонапряженных газотурбинных (турбовинтовых) двигателях и высоконагруженных редукторах самолетов и вертолетов.
Изобретение относится к области рабочих жидкостей для гидравлических систем авиационной техники с диапазоном рабочих температур жидкости в гидравлической системе от 135°С до минус 60°С.

Изобретение относится к гидравлическим маслам типа МГ-15-В (классификация по ГОСТ 17479.3-85), используемых в качестве рабочих жидкостей в гидравлических системах и гидроприводах строительных, дорожных, лесозаготовительных, подъемно-транспортных и других машин и гидрооборудования, эксплуатируемых в различных климатических условиях.
Изобретение относится к консервационно-технологическим смазочным материалам (КТСМ) и предназначено как для консервации листового и профильного проката, труб, оборудования и запасных частей, так и для использования в качестве технологического смазочного материала для лезвийной обработки и обработки металлов давлением.

Изобретение относится к защитным смазочным материалам, в частности к консервационным смазкам, предназначенным для долговременной защиты от коррозии наружных и внутренних поверхностей изделий машиностроения, проката, полуфабрикатов и запасных частей из черных металлов и их сплавов, хранящихся под навесом или в упаковке.
Изобретение относится к нефтехимии, в частности к составам масел, используемых для смазывания цилиндров паровых машин, смазывания форм в литейном производстве, в качестве закалочного масла в кузнечном производстве, смазывания цепей и редукторов, работающих в печах и доменном производстве.

Изобретение относится к области нефтепереработки и нефтехимии, а именно к смазочным материалам, представляющим собой пленкообразующие ингибированные составы, предназначенные для консервации металлоконструкций из черных и цветных металлов авиационной, космической, автомобильной и сельскохозяйственной техники.

Изобретение относится к области создания пластичных смазок, работоспособных в узлах трения качения в широком диапазоне нагрузок и скоростей, в интервале температур от минус 60 до плюс 200°С.

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано для выделения ароматических углеводородов С6-С9 из риформата бензиновой фракции с одновременным получением реформулированного экологически чистого компонента автомобильного бензина.
Наверх