Способ получения полуфабрикатов из порошкового композиционного материала на основе алюминия

Изобретение относится к порошковой металлургии, в частности к конструкционным композиционным материалам на основе алюминия. Может применяться в изделиях точного машиностроения, например, при создании приборов систем управления летательных аппаратов. Способ получения полуфабрикатов из порошкового композиционного материала на основе алюминия включает смешивание порошка алюминиевого сплава и порошка кремния и засыпку полученной смеси в капсулу с относительной плотностью засыпки 0,62-0,63. Капсула изготовлена из чистого алюминия при следующих соотношениях размеров: диаметр к высоте - не более 1:3, толщина стенок к диаметру - не менее 1:5. Затем проводят дегазацию в вакуумной установке в три стадии при температуре и времени выдержки, обеспечивающих сохранение дисперсности структуры, близкой к исходному состоянию порошковой смеси. На первой стадии дегазацию ведут в вакууме, вторую стадию дегазации проводят в инертном газе, на третьей стадии дегазацию ведут при вакууме 5·10-5-1·10-5 мм рт.ст. При натекании газовых примесей в объем вакуумной установки не более 3 л·мк/сек дегазацию прекращают. Техническим результатом является получение материала с однородной мелкодисперсной структурой, высокими физико-механическими свойствами. 1 табл.

 

Область техники

Изобретение относится к порошковой металлургии и может быть использовано в качестве конструкционного материала в изделиях точного машиностроения, в том числе при создании командных приборов систем управления летательных аппаратов с высокими эксплуатационными характеристиками, в которых требуется сочетание таких свойств изделий, как малый удельный вес, низкий коэффициент линейного расширения (к.л.р.), высокая размерная стабильность и вакуумная плотность. Материал должен быть также экологически чистым.

Предшествующий уровень техники

Известен способ изготовления компактного материала, содержащего металлическую матрицу из алюминия или алюминиевых сплавов и частиц твердой армирующей фазы, включающей в себя механическое твердофазное легирование алюминия или алюминиевого сплава в шаровой мельнице в атмосфере азота, стабилизацию легированного порошка (т.е. делают его не пирофорным), смешение стабилизированного порошка с упрочняющими частицами (например, карбидом кремния), засыпку порошковой смеси в контейнер, нагрев и вакуумную откачку контейнера, герметизацию контейнера и последующее его горячее прессование.

Недостатком известного способа является высокая энергоемкость и трудоемкость процесса, высокий коэффициент линейного расширения, плохая обрабатываемость и высокая плотность, низкая размерная стабильность (Патент США №4557893, 10.12.85, МПК В 22 Р 1/00). Все это не позволяет получать материал с высокими характеристиками и эксплуатационной надежностью в течение длительного срока службы.

Известен способ изготовления полуфабрикатов из композиционного материала, включающий получение порошка алюминиевого сплава, введение в него порошка кремния, засыпку порошковой композиционной смеси в капсулы, вакуумную дегазацию, герметизацию и горячее изостатическое прессование (Патент РФ №2174456, МПК В 22 Р 3/15), принятый в качестве наиболее близкого аналога предлагаемого изобретения (прототип).

Недостатком известного способа является нестабильность получения заготовок требуемых размеров и требуемого качества, что приводит к повышенному браку и увеличению стоимости материала; невозможности точного контроля окончания процесса дегазации, что приводит к завышенному содержанию газовых примесей в материале и, как следствие, к ухудшению физико-механических характеристик (к.л.р., вакуум-плотности, пластичности и др.). Все это не позволяет получать материал высокого качества, следовательно, обеспечить высокую эксплуатационную надежность материала в течение длительного срока службы.

Краткое изложение сущности изобретения

Задачей, на решение которой направлено изобретение, является получение материала с однородной мелкодисперсной структурой, высокими физико-механическими свойствами (низким к.л.р., высокой размерной стабильностью и вакуум-плотностью, повышенной технологичностью) и эксплуатационной надежностью материала в течение длительного срока службы, а также расширение номенклатуры и размеров получаемых полуфабрикатов, снижение трудоемкости и энергоемкости технологического процесса.

Для решения поставленной задачи в способе получения полуфабрикатов из порошкового композиционного материала на основе алюминия, включающем получение порошка алюминиевого сплава, введение в него порошка кремния, засыпку полученной порошковой композиционной смеси в капсулы, дегазацию порошковой смеси, герметизацию капсул по окончании процесса дегазации и горячее изостатическое прессование, при этом используют капсулы, изготовленные из чистого алюминия, которые имеют следующие соотношение размеров: диаметр к высоте - не более 1:3, толщина стенки к диаметру - не менее 1:5, а плотность засыпки смеси в капсуле - в пределах 0,62-0,63 относит.; процесс горячей дегазации в вакуумной установке ведут с использованием вакуума или инертного газа при температуре и времени выдержки, обеспечивающих сохранение дисперсности структуры, близкой к исходному состоянию порошковой смеси, а окончание процесса дегазации осуществляют в том случае, если натекание газовых примесей из дегазируемого материала в объем вакуумной установки при вакууме 5×10-5-1×10-5 мм рт.ст. составляет не более 3 л·мк/сек.

Предлагаемый способ позволяет сохранять в полуфабрикате однородную тонкодисперсную структуру, практически не отличающуюся от структуры исходной порошковой смеси, иметь стабильно минимальное содержание газовых примесей в материале и тем самым обеспечивать высокие физико-механические свойства на полуфабрикатах. Это обеспечивается аналитически-экспериментальным обоснованием выбора оптимальных размеров технологических капсул и плотности засыпки в них композиционной смеси, а также использованием принципиально нового процесса дегазации порошковой смеси. Суть предлагаемого способа заключается в том, что процесс дегазации с целью его оптимизации ведется на определенных стадиях либо в вакууме, либо в среде инертного газа - гелия, так как последний обладает самой высокой проницаемостью по сравнению с другими газами. На первой стадии с целью недопущения дополнительного окисления дегазацию ведут в вакууме. Затем для интенсификации и равномерности прогрева порошковой смеси в объеме всей капсулы процесс дегазации ведут в гелии, за счет чего резко сокращается общее время дегазации и, следовательно, уменьшается температурно-временное воздействие на структурное состояние материала. Кроме того, использование гелия как среды дегазации, особенно в период максимального газоотделения, также существенно ускоряет процесс дегазации и устраняет возможность образования сегрегации газовых примесей в порошковой смеси в объеме капсулы. Последнюю стадию дегазации проводят в вакууме 5×10-5-1×10-5 мм рт.ст. в основном с целью удаления инертного газа (гелия), а также выделяющегося из порошка растворенного водорода. Окончание процесса дегазации проводят в том случае, если натекание газовых примесей из дегазируемого материала в объем вакуумной установки при вакууме 5×10-5-1×10-5 мм рт.ст. составляет не более 3 л·мк/сек. Все это обеспечивает получение материала, структура которого практически соответствует структуре исходного материала, т.е. тонкодисперсные равномерно распределенные в α-твердом растворе выделения первичных кристаллов кремния и интерметаллидных фаз NiAl3, FeAl3, AlN, AlP, что является основным условием для производства изделии из этого материала с высокими эксплуатационными характеристиками и надежностью их работы в течение длительного срока службы.

Описание вариантов воплощения изобретения

Предлагаемый способ получения полуфабрикатов из порошкового композиционного материала на основе алюминия был опробован на трех составах композиционного материала.

Пример 1. В порошок сплава на основе алюминия (содержащий 27% кремния, 4,6% никеля, 0,075% фосфора, 0,03% нитрида алюминия - порошковая композиционная смесь №1), размер частиц которого был не более 60 мкм, вводили порошок кремния, размер частиц которого был также не более 60 мкм, в соотношении 3,76:1. Смесь №1 засыпали в герметичные технологические капсулы, изготовленные из чистого алюминия, при следующем соотношении размеров: диаметр к высоте - не более 1:3, толщина стенки к диаметру - не менее 1:5, а плотность засыпки смеси в капсуле - в пределах 0,62-0,63 относит., с одновременным уплотнением до плотности 1,62-1,65 г/см3 (0,62-0,63 относит.). Капсулы с порошковой композиционной смесью помещали в вакуумную нагревательную установку и производили дегазацию с использованием вакуума и инертного газа при температуре и времени выдержки, обеспечивающих сохранение дисперсности структуры, близкой к исходному состоянию порошковой смеси При этом окончание процесса дегазации осуществляли после того, как натекание газовых примесей из дегазируемого материала в объем вакуумной установки при вакууме 5×10-5-1×10-5 мм рт.ст. составлял не более 3 л·мк/сек. По окончании процесса дегазации без изменения параметров вакуума и температуры проводили герметизацию капсул. Процесс горячего изостатического прессования загерметизированных капсул проводили в газостате при 520°С с усилием 1100 ати и выдержке 3 ч. Полученные заготовки подвергали механической обработке с целью удаления технологической алюминиевой капсулы.

Пример 2. В порошок сплава САС1-50, легированного бериллием (0,03% Ве) и оксидом алюминия (2,2% Al2О3), вводили порошок кремния в соотношении 4:1 - порошковая композиционная смесь №2. Режимы последующей обработки приготовленной смеси №2 до получения компактной заготовки проводили в соответствии с примером 1.

Пример 3. В порошок сплава САС1-50 вводили порошок нитрида кремния в соотношении 6:1 - порошковая композиционная смесь №3. Режимы и схемы последующей обработки приготовленной смеси №3 до получения компактной заготовки проводили в соответствии с примером 1. Помимо указанных примеров эти же три композиционных материала были получены по известному способу.

Данные анализа физико-механических свойств порошковых композиционных материалов, полученных в соответствии с примерами 1-3 приведены в таблице, также в таблице представлены свойства материалов, полученных по известному из прототипа способу с тем же набором компонентов, что и в примерах 1-3. Из анализа результатов, приведенных в таблице, можно сделать вывод, что наилучший технический результат достигается при использовании предлагаемого способа, который позволяет получать материал со структурой, практически соответствующей исходному материалу, т.е. тонкодисперсные равномерно распределенные в α-твердом растворе выделения первичных кристаллов кремния (в основном глобулярной формы) и интерметаллидных фаз NiAl3, FeAl3, AlN, AlP, которые являются определяющими при обеспечении высоких физико-механических характеристик материала.

Таким образом, используя предлагаемый способ, получаем материал: с высоким модулем упругости, низким коэффициентом линейного расширения, повышенными прочностными и пластическими характеристиками, низким значением газовых примесей, высокой размерной стабильностью и вакуум-плотностью, улучшенной обрабатываемостью. Помимо отмеченного, получаемый по данному способу материал обладает минимальным отношением к.л.р. к теплопроводности (α/λ), что является свидетельством минимальных температурных деформаций и напряжений, возникающих в изделиях под воздействием колебаний температуры в условиях эксплуатации и хранения.

Все это гарантирует высокие эксплуатационные характеристики и высокую надежность работы изделий из этого материала в течение длительного срока службы. Кроме того, материал с указанными характеристиками позволяет расширить номенклатуру получаемых полуфабрикатов, снизить себестоимость их изготовления и значительно расширить области их использования.

Таблица

СПОСОБ ПОЛУЧЕНИЯ ПОЛУФАБРИКАТОВ ИЗ ПОРОШКОВОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ АЛЮМИНИЯ
№ п/пСпособы получения материала (состав компонентов в соответствии с примерами 1, 2, 3)Удельный предел упругости Е/ρУсловный к.л.р., α/λОбщее газосодержание, см3/100 гВакуум-плотность при толщине стенки, ммОбрабатываемость
1Предложенный №145,80,12,50,65-0,02удовлет.
2Предложенный №241,30,123,00,85-0,02удовлет.
3Предложенный №341,50,153,01,10-0,02неудовлет.
4Известный №140,50,206,21,00-0,02удовлет.
5Известный №236,60,256,71,30-0,02удовлет.
6Известный №337,00,358,01,35-0,02неудовлет.

Способ получения полуфабрикатов из порошкового композиционного материала на основе алюминия, включающий смешивание порошка алюминиевого сплава и порошка кремния, засыпку полученной смеси в капсулу, дегазацию в вакуумной установке, герметизацию капсул по окончании дегазации и горячее изостатическое прессование, отличающийся тем, что смесь засыпают в капсулу с относительной плотностью засыпки 0,62-0,63, изготовленную из чистого алюминия, имеющую следующие соотношения размеров: диаметр к высоте - не более 1:3, толщина стенок к диаметру - не менее 1:5, дегазацию проводят в три стадии при температуре и времени выдержки, обеспечивающих сохранение дисперсности структуры, близкой к исходному состоянию порошковой смеси, при этом на первой стадии дегазацию ведут в вакууме, вторую стадию дегазации проводят в инертном газе, на третьей стадии дегазацию ведут при вакууме 5·10-5-1·10-5 мм рт.ст., а дегазацию прекращают, когда натекание газовых примесей в объем вакуумной установки составляет не более 3 л·мк/с.



 

Похожие патенты:

Изобретение относится к порошковой металлургии, в частности к способам получения высокопрочных изделий из порошков тугоплавких металлов. .

Изобретение относится к химико-термической обработке преимущественно жаропрочных никелевых сплавов. .

Изобретение относится к устройствам для горячего изостатического прессования. .

Изобретение относится к прессу для горячего изостатического прессования, снабженному средствами быстрого охлаждения обработанных изделий. .

Изобретение относится к изделиям из быстрорежущей стали с высокой термостойкостью, полученным методом порошковой металлургии, в частности к режущему инструменту для высокоскоростного резания.

Изобретение относится к легированным инструментальным сталям для изготовления деталей методом порошковой металлургии, в частности инструмента для холодной обработки.

Изобретение относится к области металлургии, в частности к получению сплавов для изготовления инструмента для обработки материалов давлением, и может быть использовано в металлообрабатывающей промышленности для горячей изотермической штамповки жаропрочных сплавов.

Изобретение относится к порошковой металлургии и может быть использовано в авиакосмической, ракетной, текстильной, приборостроительной, автомобильной, судостроительной и др.

Изобретение относится к порошковой металлургии и может быть использовано в процессах формования и уплотнения заготовок из металлического порошка и керамики. .
Изобретение относится к порошковой металлургии и энергетическому машиностроению и может быть использовано для производства рабочих колес (роторов) газовых турбин, работающих в агрессивных средах, условиях высокоскоростного газового потока и перепада температур.
Изобретение относится к порошковой металлургии, в частности к способам изготовления композиционных материалов на основе стали с добавкой карбидов. .
Изобретение относится к порошковой металлургии, в частности к получению изделий из сверхтвердых материалов на основе кубического нитрида бора (КНБ). .

Изобретение относится к порошковой металлургии, в частности к способам и устройствам для формования. .
Изобретение относится к порошковой металлургии, в частности к способам горячего прессования оболочек. .

Изобретение относится к порошковой металлургии, в частности к способам горячего прессования деталей с внутренними полостями, преимущественно из порошков тугоплавких керамических материалов.

Изобретение относится к порошковой металлургии, в частности к получению твердосплавных, композиционных материалов со специальными свойствами. .

Изобретение относится к порошковой металлургии, в частности к способу изготовления низкопористых изделий. .

Изобретение относится к порошковой металлургии и может быть использовано для получения горячедеформированных порошковых материалов на основе механохимически активированной смеси стружкового и алюминиевого порошков.

Изобретение относится к получению нового соединения, а именно к получению оксидной ванадиевой бронзы перовскитоподобного типа. .

Изобретение относится к порошковой металлургии, в частности к оборудованию и способам обработки материалов в химически активной среде при высоких давлениях и температурах.

Изобретение относится к порошковой металлургии, в частности к получению изделий из жаропрочных никелевых сплавов, использующихся для авиационного и энерготехнического назначения
Наверх