Пирофосфатный электролит для нанесения сплава олово-цинк

Изобретение относится к гальваническому получению покрытий сплавом олово-цинк с содержанием олова 70-80%. Электролит содержит, г/л: хлорид олова (II) двуводный (в пересчете на металл) 17-19, сульфат цинка семиводный (в пересчете на металл) 3,5-7,5, пирофосфат натрия десятиводный 130-155, желатин 1-2, метиленовый голубой (м.м. 373,9) (0,05-1,0)·10-3 моль/л. Технический результат: получение полублестящих, хорошо сцепленных с основой покрытий сплавом олово-цинк с высоким выходом по току, повышение стабильности электролита. 6 табл.

 

Изобретение относится к гальваническому получению покрытий сплавом олово-цинк с содержанием олова 70-80%.

Известны пирофосфатный, щелочно-цианистый электролиты на основе двухвалентных солей олова [1-2].

Недостатками всех электролитов, содержащих соли олова со степенью окисления +2 является их нестабильность в работе, так как олово (II) окисляется, что приводит к изменению состава сплава и качеству покрытия.

Из известных электролитов наиболее близким по составу и технологическим характеристикам является электролит, содержащий (г/л): хлорид олова дигидрат 34; оксид цинка 3-8; хлорид аммония 100; пирофосфат калия 144; желатин 0,5; гидразинсульфат 5-10 [3]. Однако вводимые антиоксиданты (восстановители), такие как гидразинсульфат, формалин, глюкоза, аскорбиновая кислота и др., не могут в полной мере решить данную проблему, так как они окисляются в процессе работы.

Техническим результатом предлагаемого электролита является получение полублестящих, хорошо сцепленных с основой покрытий сплавом олово-цинк, с высоким выходом по току. Электролит стабилен в работе.

Это достигается тем, что пирофосфатный электролит для нанесения сплава олово-цинк, содержащий (г/л): хлорид олова (II) двуводный (в пересчете на металл) 17-19, сульфат цинка семиводный (в пересчете на металл) 3,5-7,5, пирофосфат натрия десятиводный 130-155, желатин 1-2 дополнительно содержит редокс-активную добавку - фенотиазиновый краситель метиленовый голубой (метиленблау) (0,05-1,0)·10-3 моль/л.

Механизм действия редокс-активной добавки (метиленовый голубой) заключается в том, что при оптимальных значениях рН, катодной и анодной плотностях тока и температуры, редокс-активная добавка (метиленовый голубой) восстанавливается на катоде и является донором электронов для олова (IV), находящегося в электролите, восстанавливая последний до олова (II).

В растворе устанавливается динамическое равновесие окисленной и восстановленной форм редокс-активной добавки и ионов олова (II) и олова (IV), при этом в электролите практически отсутствуют ионы олова (IV).

Механизм действия редокс-активной добавки (метиленовый голубой) можно описать следующими уравнениями реакции:

1. Восстановление редокс-активной добавки на катоде по уравнению (1).

2. Восстановление ионов олова (IV) в объеме электролита редокс-активной добавки по уравнению (2).

Реакция 1

Реакция 2

He выявлены решения, имеющие признаки заявляемого электролита.

Для исследования влияния концентрации редокс-активной добавки на изменение концентрации олова (II), олова (IV) в электролите, выход по току сплава и содержание олова в сплаве был приготовлен водный электролит, состав которого приведен в таблице 1.

Таблица 1.
Состав электролита.
Электролит №1Электролит №2Электролит №3
Хлорид олова дигидрат (в пересчете на металл), г/л191718
Сульфат цинка семиводный (в пересчете на металл), г/л53,57,5
Пирофосфат натрия десятиводный, г/л145130155
Желатин, г/л1-21-21-2
Метиленовый голубой, · 10-3 моль/л0,25-0,50,05-0,250,5-1,0

Электролит готовился следующим образом.

В отдельной емкости растворяли, согласно составу электролита, соли олова и цинка. В другой емкости растворяли пирофосфат натрия. Затем в емкость с раствором солей олова (II) и цинка вливали раствор пирофосфата натрия. Образовавшийся осадок пирофосфатов олова и цинка отфильтровывали, промывали водой, а затем растворяли в оставшемся растворе пирфосфата натрия. В раствор вводили раствор желатина и раствор метиленового голубого, а затем доводили объем электролита до заданного.

Электролиз проводили в ванне при температуре электролита 30°С, катодной плотности тока 1,5 А/дм2, при соотношении рабочей поверхности катодов и анодов 1:2.

Электролиз вели до достижения 14 А·ч/л.

В процессе электролиза анализировали изменения концентрации олова (II), олова (IV), а также исследовали выход по току сплава и содержание олова в сплаве.

Данные о влиянии концентрации редокс-активной добавки (метиленовый голубой) на изменение концентрации олова (II), олова (IV) в электролите, выход по току сплава и содержание олова в сплаве приведены в таблице 2.

Следует отметить, что при наличии редокс-активной добавки (метиленовый голубой) в электролите покрытия получаются более блестящими. Так, если при Сдоб=0 покрытия получаются матовыми с серым оттенком, при введении добавки Cдоб=5·10-5...2,5·10-4 моль/л покрытия получаются полублестящими. При отсутствии добавки в электролите по мере проработки от 0 до 14 А·ч/л содержание олова в сплаве уменьшается с 60 до 34,5%, а в присутствии редокс-активной добавки с Сдоб=5·10-4 моль/л содержание олова в сплаве даже не значительно увеличивается, что связанно с постоянной концентрацией Sn (II) в электролите.

Как следует из таблицы 2, оптимальная концентрация редокс-активной добавки (метиленовый голубой) составляет 2,5·10-4-5,0·10-4 моль/л. При этих концентрациях обеспечивается стабильность работы электролита и хорошее качество покрытия. При концентрациях добавки больше 1·10-3 моль/л происходит уменьшение выхода по току сплава, что, очевидно, связано с избыточной адсорбцией метиленового голубого на поверхности покрываемых деталей.

Редокс-активная добавка (метиленовый голубой) вводится в электролит в окисленной форме. Электролиз показал, что в прикатодном пространстве редокс-активная добавка (метиленовый голубой) полностью восстанавливается, а в прианодном пространстве остается в окисленной форме. В объеме электролита редокс-активная добавка (метиленовый голубой) присутствует в обеих формах. Восстановленная форма редокс-активной добавки диффундирует в объем электролита и стабилизирует концентрацию Sn (II). Окисленная форма редокс-активной добавки диффундирует в катодное пространство, где и восстанавливается. Таким образом, редокс-активная добавка (метиленовый голубой) не позволяет Sn (II) переходить в Sn (IV).

На состав сплава и выход по току оказывают влияние концентрация ионов металлов, разряжающихся на катоде, плотность тока, температура и рН электролита.

Согласно таблице 3 существенное влияние на состав сплава оказывает концентрация цинка в электролите. При увеличении концентрации цинка в электролите с 0,025 моль/л до 0,1 моль/л содержание олова в сплаве уменьшается с 86 до 69%, выход по току сплава увеличивается с 64 до 71%. В исследованном диапазоне концентраций ионов цинка и олова на катоде осаждаются полублестящие покрытия сплавом.

Математическая зависимость содержания олова в сплаве от концентрации цинка в электролите подчиняется полиномиальному, логарифмическому и экспоненциальному уравнениям с высокими коэффициентами корреляции:

у=0,1875x2-4,725x+94,75R2=0,9997;
у=-12,271lgx+95,005R2=0,9909;
у=92,021е-0,037xR2=0,9921.

Плотность тока влияет на состав сплава и выход по току. Согласно таблице 4 с увеличением плотности тока от 1 до 2 А/дм2 содержание олова в сплаве уменьшается с 79 до 60%, выход по току сплава также уменьшается с 74 до 62%. В заданном диапазоне плотностей тока осаждаются полублестящие покрытия сплавом. При плотностях тока выше 2,5 А/дм2 осаждаются матовые покрытия.

Математическая зависимость содержания олова в сплаве от катодной плотности тока также подчиняется полиномиальному, логарифмическому и экспоненциальному уравнениям с высокими коэффициентами корреляции:

у=2,5714x2-19,686x+96R2=0,9995;
у=-17,359lgx+79,01R2=0,9999;
у=89,224e-0,1367xR2=0,9852.

Как следует из данных таблицы 5, температура электролита влияет на состав сплава и выход по току сплава. С повышением температуры электролита с 22°С до 52°С содержание олова в сплаве увеличивается с 65 до 78%, выход по току сплава также увеличивается с 63 до 82%. В интервале температур 20-40°С осаждаются полублестящие покрытия сплавом, а при более высокой температуре - матовые покрытия.

Математическая зависимость содержания олова в сплаве от температуры электролита подчиняется полиномиальному, логарифмическому и экспоненциальному уравнениям:

у=-0,0131x2+1,359х+42,224R2=0,9624;
у=14,015lgx+23,091R2=0,9461;
у=59,724e0,0054xR2=0,8737.

Согласно таблице 6 рН электролита влияет на состав сплава и выход по току. При увеличении рН с 7,5 до 9,0 содержание олова в сплаве увеличивается с 67 до 75%, выход по току уменьшается с 76 до 70%. В интервале рН 8-9,5 осаждаются полублестящие покрытия сплавом, а при рН<7,5 осаждаются темные покрытия.

Математическая зависимость содержания олова в сплаве от рН электролита подчиняется полиномиальному, логарифмическому и экспоненциальному уравнениям:

у=-3х2+54,5x-172,75R2=0,964;
у=41,422lgx-15,563R2=0,912;
у=40,094e0,0704xR2=0,8908.

Применение трех уравнений позволяет исключить случайную ошибку при автоматизированном управлении технологическим процессом электроосаждения сплава олово-цинк.

Таким образом, использование редокс-активной добавки (метиленовый голубой) позволяет стабилизировать состав электролита по ионам олова (II) и осаждать полублестящие покрытия сплавом с содержанием олова 65-75%.

Преимущества промышленного использования заявляемого электролита:

1. Отсутствие окисления двухвалентного олова, а следовательно, стабильный в работе электролит.

2. Получение сплава олово-цинк без изменения состава сплава в процессе электролиза и снижения качества покрытия.

Таблица 2
Зависимость динамики изменения концентрации Sn (II) - Sn (IV), ВТспл, процентное содержание олова в сплаве от концентрации добавки в электролит.
Концентрация добавки, моль/лQ, А·ч/л0151014
0 (добавка не вводилась)CSn(II), моль/л0,1410,1440,1510,1520,151
CSn(IV), моль/л0,020,020,060,090,1
ВТспл, %56,850433532
ωSn, %6053423734,5
5·10-5CSn(II), моль/л0,1420,1200,1060,1000,101
CSn(IV), моль/л00,0120,0350,0380,038
ВТспл, %56,757535050
ωSn, %6058545555
2,5·10-4CSn(II), моль/л0,1410,1310,1220,1230,122
CSn(IV), моль/л00,0050,00760,00760,0075
ВТспл, %56,757,757,157,157,2
ωSn, %60,259565656
5·10-4CSn(II), моль/л0,1410,1460,1490,1500,149
CSn(IV), моль/л00,002000,002
ВТспл,%56,862636263
ωSn, %6063656465
1·10-3CSn(II), моль/л0,1350,1460,1500,1510,150
CSn(IV), моль/л00000
ВТспл, %5562626162
ωSn, %60636567,267

Таблица 3
Зависимость состава сплава от концентрации цинка в электролите.
Czno, г/л2468
ωSn, %86797369
ВТ, %64687071
ωZn, %14212731
Таблица 4
Зависимость состава сплава и выхода по току сплава от плотности тока
iк, А/дм21,01,52,02,53,0
ωSn, %7972676360
ВТ, %7469666462
Таблица 5
Зависимость состава электролита, состава сплава и выхода по току сплава от температуры.
t°C2227324252
CSn2+, моль/л0,1500,1510,1500,1520,150
CSn4+, моль/л00000
ωSn, %6570737578
ВТ, %6365707782
Таблица 6
Зависимость состава сплава и выхода по току сплава от рН.
рН7,58,08,59,0
ωSn, %67727375
ВТ, %76727070

Источники информации

1. Ямпольский A.M., Ильин В.А. Краткий справочник гальванотехника. - 3-е изд., перераб. и доп. - Л.: Машиностроение, Ленингр. отд-ние. 1981, с 124.

2. Ларин И.О., Максименко С.А., Тютина К.М., Кудрявцев В.Н. Влияние некоторых органических веществ на процесс окисления олова в кислых электролитах для осаждения олова и его сплавов. Прогрессивная технология и вопросы экологии в гальванотехнике и производстве печатных плат: Материалы конференции. Пенза, 1996, с.6.

3. Ваграмян Т.А., Одеосама Б.Н. Некоторые особенности процесса электроосаждения сплава цинк-олово. Замена и снижение расходов дефицитных металлов в гальванотехнике. Материалы семинара. М., 1983, с.116-119.

Пирофосфатный электролит для осаждения сплава олово-цинк, содержащий хлорид олова (II) двуводный, сульфат цинка семиводный, пирофосфат натрия десятиводный, желатин, отличающийся тем, что дополнительно содержит редокс-активную добавку метиленовый голубой при следующем соотношении компонентов, г/л:

Хлорид олова (II) двуводный (в пересчете на металл)17-19
Сульфат цинка семиводный (в пересчете на металл)3,5-7,5
Пирофосфат натрия десятиводный130-155
Желатин1-2
Метиленовый голубой, моль/л(0,05-1,0)·10-3



 

Похожие патенты:

Изобретение относится к области машиностроения, а именно к способам получения покрытий для защиты от коррозии стальных деталей. .

Изобретение относится к области получения гальванических покрытий, в частности покрытий из олова и его сплавов, и может быть использовано при производстве многослойных плат в электронной и радиотехнической промышленности.

Изобретение относится к гальванической ванне сплава олово-цинк и способу нанесения гальванического покрытия при ее применении. .

Изобретение относится к гальванотехнике, а именно к электроосаждению блестящих покрытий сплавом олово-свинец. .

Изобретение относится к гальваностегии, в частности к нанесению блестящих покрытий олово-свинец ПОС-60. .

Изобретение относится к получению гальванических покрытий, в частности покрытий из олова и его сплавов, и может быть использовано при производстве многослойных печатных плат в электронной и радиотехнической промышленности.

Изобретение относится к получению гальванических покрытий, в частности покрытий из сплава олово-свинец, и может быть использовано при производстве многослойных печатных плат и других паяемых элементов в электронной и радиотехнической промышленности.

Изобретение относится к гальваностегии, в частности к электрохимическому осаждению сплава олово-висмут, и может быть использовано в радиоэлектроннр,й, приборостроительной промышленности при изготовлении плат микросборок и пе-..Xчатного монтажа.

Изобретение относится к гальваностегии , в частности к электроосаждению покрытий сплавами олова на выводы полупроводниковых приборов, и может быть использовано в приборостроении, электронной и радиопромышленности.
Изобретение относится к области гальванотехники, в частности к электрохимическому нанесению защитных покрытий сплавом олово-цинк

Изобретение относится к области гальваностегии и может быть использовано в различных отраслях промышленности, где необходимо при изготовлении деталей нанесение покрытий, идентичных по цветовым характеристикам хромовым
Изобретение относится к области гальванотехники и может быть использовано в радио- и электронной промышленности

Изобретение относится к области гальванотехники и может быть использовано в машиностроении, автомобилестроении, морском транспорте и в других отраслях промышленности для увеличения коррозионной стойкости покрытий на основе сплава олово-цинк

Изобретение относится к области электрохимии и может быть использовано в условиях воздействия агрессивных сред, в том числе в условиях морского и тропического климата. Электролит содержит, моль/л: сульфат олова 0,08-0,09, сульфат цинка 0,065-0,085, лимонную кислоту 0,31-0,33, цитрат щелочного металла 0,65-0,68, препарат OC-20 0,70-0,80 г/л, дифениламин 0,20-0,32 г/л, фторопластовую эмульсию Ф-4Д-Э 0,25-0,30 г/л. Технический результат: повышение коррозионной стойкости, снижение экологической опасности при сохранении основных физико-механических параметров покрытий. 2 табл., 2 ил., 1 пр.
Изобретение относится к области получения гальванических покрытий олово-никелевыми сплавами на меди, медных покрытиях, сталях и может быть использовано в радиоэлектронике, приборостроении, машиностроении, автомобильной промышленности и др. Электролит содержит, г/л: олово сернокислое 20-30; никель муравьинокислый 20-30; аммоний щавелевокислый 90-110; аммоний хлористый 5-10; препарат ОС-20 0,5-0,6 и воду до 1 литра. Технический результат: увеличение коррозионной стойкости олово-никелевых покрытий, за счет повышения содержания никеля до 35%, расширение диапазона рабочих плотностей тока, использование низких концентраций металлов в электролитах. 2 табл., 1 пр.
Наверх