Устройство для контроля внутренних поверхностей тел

Устройство содержит цилиндрический корпус с расположенными внутри него осветительной системой, состоящей из лампы накаливания и торической линзы, масштабной сетки и объектива системы наблюдения. Также в него введены телевизионная система, состоящая из ПЗС-матрицы, расположенной в фокальной плоскости объектива системы наблюдения, и видеоконтрольного устройства, коллиматорная линза, расположенная перед объективом системы наблюдения на его оси, совпадающей с продольной осью корпуса, полупрозрачное зеркало, установленное перед коллиматорной линзой на ее оптической оси под углом 45° к ней, два полупроводниковых микролазера с расположенными перед ними цилиндрическими линзами. Технический результат - расширение технических возможностей известных устройств. 2 ил.

 

Изобретение относится к неразрушающему контролю, а более конкретно к устройствам визуального и измерительного контроля внутренней поверхности корпусов ракет, сосудов высокого давления и т.п. объектов.

Известно устройство для контроля внутренней поверхности объектов, содержащее цилиндрический корпус с последовательно установленными внутри него вдоль его продольной оси осветительной и электрической лампами, системой наблюдения, состоящей из конического зеркала кольцевого обзора, объектива световода, окуляра и масштабной сетки [1].

Недостатком данного устройства является невозможность наблюдения дефектов в направлении, ортогональном оптической оси устройства, и отсутствие телевизионного канала наблюдения.

Известно устройство, позволяющее вести наблюдение дефектов внутренней поверхности объектов с двух направлений с помощью телевизионных систем, оптические оси которых взаимно ортогональны и позволяют наблюдать дефект как в направлении прямого обзора, так и боковом направлении [2].

Недостаток данного устройства - отсутствие средств измерения размеров дефектов, а также определения их координат на внутренней поверхности контролируемого объекта.

Цель изобретения - устранение недостатков приведенных выше аналогов.

Для этого в устройство, содержащее цилиндрический корпус с последовательно расположенными внутри него вдоль его продольной оси осветительной системой, состоящей из лампы накаливания с тороидальной линзой, масштабной сетки и объектива системы наблюдения, дополнительно введены коллиматорная линза, расположенная перед объективом на его оси, телевизионная система, состоящая из ПЗС-матрицы, расположенной в плоскости изображения объектива системы наблюдения, и видеоконтрольного устройства, объектив выполнен панкреатическим с изменяемым фокусным расстоянием, полупрозрачное зеркало, установленное перед коллиматорной линзой на ее оптической оси под углом 45° к ней, два полупроводниковых микролазера с установленными перед ними цилиндрическими линзами, формирующими на внутренней поверхности контролируемого объекта два ортогональных световых штриха в виде светящегося перекрытия, центр перекрытия расположен в плоскости, проходящей через точку пересечения полупрозрачного зеркала с осью объектива перпендикулярно к ней и совпадающей с плоскостью, проходящей через световое кольцо, формируемое торической линзой на внутренней поверхности объекта, первый микролазер расположен в плоскости, проходящей через оптическую ось объектива, а формируемый им плоский световой расходящийся луч перпендикулярен к этой плоскости и наклонен к нормали поверхности объекта в точке ее пересечения с осью пучка под углом α≤arctg (S/H), где S - размер дефекта на поверхности объекта, Н - его глубина, а второй микролазер расположен в плоскости, перпендикулярной оси объектива и проходящей через точку ее пересечения с полупрозрачным зеркалом, и наклонен под углом α к плоскости расположения первого микролазера, фокусное расстояние коллиматорной линзы выбирается из соотношения f≥R+С, где R - радиус контролируемой внутренней поверхности объекта, С≥A/2, где/А - размер полупрозрачного зеркала, масштабная сетка расположена в фокальной плоскости коллиматорной линзы для обеспечения равномасштабности изображений дефекта и сетки, корпус устройства закреплен на механизме, обеспечивающем его продольное перемещение внутри контролируемого объекта вдоль продольной оси корпуса, с возможностью вращения корпуса относительно этой оси и отсчета величин перемещения корпуса и его поворота с помощью расположенных на механизме перемещения измерительных шкал для определения полярных координат залегания дефектов на внутренней поверхности объекта.

Схема устройства приведена на фиг.1.

Устройство содержит полый цилиндрический корпус 1, в котором вдоль его продольной оси последовательно установлены электрическая лампа 2, тороидальная линза 3, масштабная сетка 4, полупрозрачное зеркало 7, коллиматорная линза 8, объектив 9, ПЗС-матрица 10, полупроводниковые микролазеры 5 и 6 с цилиндрическими линзами, формирующими плоские расходящиеся пучки света, при этом первый микролазер 5 расположен в плоскости, проходящей через продольную ось корпуса 1, а его ось направлена на поверхность объекта к поверхности в точке падения луча лазера под углом α, второй микролазер 6 расположен в плоскости, проходящей через точку пересечения продольной оси корпуса перпендикулярно к ней, а его ось направлена на внутреннюю поверхность объекта под углом α, при этом плоские расходящиеся пучки света, формируемые установленными перед лазерами цилиндрическими линзами, взаимно перпендикулярны, корпус закреплен на оси 15, которая вращается в подшипнике 11, установленном на стойке 12, закрепленной на подвижной каретке 17, перемещаемой относительно основания 19 до направлению, совпадающему с продольной осью устройства, отсчет продольного перемещения ведется с помощью индекса каретки 17 по шкале 18, закрепленной на основании 18, угол поворота корпуса отсчитывается с помощью индекса 14 по лимбу 13, закрепленному на стойке 12.

Изображение масштабной шкалы и дефектов наблюдается на экране видеоконтрольного устройства 16.

Устройство работает следующим образом.

Тороидальная линза 3 формирует на внутренней поверхности изображение нити накала лампы 2 в виде светящегося кольца, контур которого повторяет рельеф изделия в плоскости, нормальной к оси корпуса 1 и совпадающей с плоскостью, проходящей через точку пересечения полупрозрачного зеркала 7 с продольной осью корпуса и перпендикулярной к ней. На экране видеоконтрольного устройства 16 оператор наблюдает изображение светящегося кольца. Одновременно он наблюдает участок внутренней поверхности объекта с проектируемыми на него лазерными полосками с помощью полупрозрачного зеркала 7, а также изображение масштабной шкалы 4 (см. фиг.2,а). При этом панкреатический объектив 9 видеосистемы наблюдения имеет минимальное фокусное расстояние.

При обнаружении дефекта, например при локальном искажении контура светящегося кольца, оператор вращает корпус 1 до появления на экране изображения дефекта в поле зрения полупрозрачного зеркала (фиг.2,а). Затем оператор изменяет фокусное расстояние панкреатического объектива до значения, при котором изображение дефекта занимает большую часть экрана (фиг.2,б), и, используя изображение масштабной сетки на экране, оценивает размеры дефекта в плоскости, ортогональной линии визирования объектива через полупрозрачное зеркало 7, а также его глубину и/или высоту по величине искривления лазерных полосок, спроектированных на него.

Масштабная шкала 4 и наблюдаемый с помощью системы бокового обзора участок внутренней поверхности объект равноудалены от коллиматорной линзы и расположены в ее фокальной плоскости, что обеспечивает равномасштабность их изображения и облегчает фокусировку объектива 9, работающего при этом в режиме фокусировки ″на бесконечность″, т.к. коллиматорная линза формирует параллельные пучки света, фокусное расстояние коллиматорной линзы выбирается из соотношения f′≥R+C, где R - внутренний радиус контролируемого объекта, С - конструктивный параметр, равный С≥А/2, где А - размер полупрозрачного зеркала. Таким образом, для измерения размеров дефекта достаточно оценить число делений масштабной шкалы, проходящее на его изображения, и умножить на цену этих делений, остающуюся постоянной при любом масштабе изображений, формируемых панкреатическим объективом 9, т.к. шкала и поверхность объекта оптически сопряжены.

Полярные координаты расположения дефекта определяются с помощью лимба 13 и шкалы 18.

Углы падения лазерных плоских пучков на контролируемую поверхность выбираются из условия α≥arctg(Н/S), где Н - максимальная глубина дефектов, S - размер в плоскости залегания (см. фиг.1).

Литература

1. Патент РФ и №1214259 "Устройство для контроля поверхности тел".

2. Промышленный видеоскоп IY6C6 фирмы OCympus, Япония (рекламный проспект прилагается).

Устройство для контроля внутренней поверхности объекта, содержащее цилиндрический корпус с последовательно расположенными внутри него вдоль его продольной оси осветительной системой, состоящей из лампы накаливания и торической линзы, масштабной сеткой и объективом системы наблюдения, отличающееся тем, что в него дополнительно введены телевизионная система, состоящая из ПЗС-матрицы, расположенной в фокальной плоскости объектива системы наблюдения, и видеоконтрольного устройства, коллиматорная линза, расположенная перед объективом системы наблюдения на его оси, совпадающей с продольной осью корпуса, полупрозрачное зеркало, установленное перед коллиматорной линзой на ее оптической оси под углом 45° к ней, два полупроводниковых микролазера с расположенными перед ними цилиндрическими линзами, формирующими на внутренней поверхности объекта два ортогональных световых штриха в виде светящегося перекрестия, центр которого расположен в плоскости, проходящей через точку пересечения полупрозрачного зеркала с осью объектива перпендикулярно к ней и совпадающей с плоскостью, проходящей через световое кольцо, формируемое торической линзой на внутренней поверхности объекта, первый микролазер расположен в плоскости, проходящей через оптическую ось объектива, а формируемый им плоский световой расходящийся луч перпендикулярен к этой плоскости и наклонен к нормали поверхности объекта в точке ее пересечения с осью пучка под углом α<arctg(S/H), где S - размер дефекта на поверхности объекта, Н - его глубина, второй микролазер расположен в плоскости, перпендикулярной оси объектива и проходящей через точку ее пересечения с полупрозрачным зеркалом, и наклонен под углом α к плоскости расположения первого микролазера, фокусное расстояние коллиматорной линзы выбирается из соотношения f'≥R+C, где R - радиус контролируемой внутренней поверхности объекта, С≥А/2, где А - размер полупрозрачного зеркала, масштабная сетка расположена в фокальной плоскости коллиматорной линзы для обеспечения равномасштабности изображений дефекта и сетки, корпус устройства закреплен на механизме, обеспечивающем его продольное перемещение внутри контролируемого объекта вдоль продольной оси корпуса, с возможностью вращения корпуса относительно этой оси и отсчета величин перемещения корпуса и его поворота с помощью расположенных на механизме перемещения измерительных шкал для определения полярных координат залегания дефектов на внутренней поверхности объекта.



 

Похожие патенты:

Изобретение относится к неразрушающему контролю, а более конкретно к устройствам визуального и измерительного контроля внутренней поверхности сварных труб, корпусов ракет и двигателей, сосудов высокого давления и т.п.

Изобретение относится к неразрушающему контролю, более конкретно - к устройствам для визуального и/или телевизионного контроля внутренней поверхности тел, например трубопроводов различного типа, сварных труб, корпусов авиадвигателей, дымоходов и т.п.

Изобретение относится к неразрушающему контролю с помощью визуально-оптических средств и может быть использовано для контроля конструкций в авиакосмической и оборонной технике, а также в различных отраслях машиностроения.

Изобретение относится к медицинской технике, а именно к системам жестких эндоскопов, предназначенных для контроля за проведением медицинских манипуляций, а также визуального осмотра особо узких полостей и каналов организма человека.

Изобретение относится к оптическому приборостроению и может быть использовано в оптических системах гибких и жестких эндоскопов с малым диаметром, предназначенных для наблюдения внутренних полостей при эндоскопических исследованиях в медицине и различных областях техники.

Изобретение относится к оптическому медицинскому приборостроению, в частности к эндоскопии, и может быть использовано в устройствах, осуществляющих механическое соединение и оптическое согласование проксимального конца эндоскопа с фотографической или телевизионной аппаратурой, а также при необходимости осуществления перемещения объектов, находящихся в герметичных объемах.

Изобретение относится к измерительной технике и может быть использовано в теплоэнергетике для контроля состояния внутренних поверхностей дымовых труб без останова котла.

Изобретение относится к неразрушающему контролю и может быть использовано для визуального и измерительного контроля внутренней поверхности сосудов высокого давления, в частности шар-баллонов для хранения сжатых газов, широко применяемых в авиакосмической технике и других изделиях.

Изобретение относится к измерительной технике, точнее к области измерения отклонения от плоскостности поверхности и может быть использовано в машиностроении, оптико-механической промышленности, а также во всех высокотехнологических отраслях промышленности, в науке, технике и т.д.

Изобретение относится к неразрушающему контролю. .

Изобретение относится к измерительной технике, точнее к области определения координат поверхности (измеряемой детали), и может быть использовано в машиностроении, станкостроении, оптико-механической промышленности, а также во всех высокотехнологических отраслях промышленности, науки, техники и т.д.

Изобретение относится к измерительной технике, а именно к устройствам для определения профиля поверхности с помощью лазерного излучения. .

Изобретение относится к неразрушающему контролю, а более конкретно к устройствам визуального и измерительного контроля внутренней поверхности сварных труб, корпусов ракет и двигателей, сосудов высокого давления и т.п.

Изобретение относится к области контрольно-измерительной техники и может быть использовано при выполнении бесконтактного контроля качества изготовления, а также в процессе профилактической проверки резьбовых изделий, например для контроля резьбовых соединений труб, используемых в установках нефтяной и газовой промышленности.

Изобретение относится к области приборостроения и лазерной техники и может быть использовано для бесконтактного определения качества изделий, имеющих повышенные классы чистоты обрабатываемых поверхностей (например, оптических элементов).

Изобретение относится к области измерительной техники и может быть использовано для контроля внутренних отверстий ответственных деталей и внутренних поверхностей труб.

Изобретение относится к измерительной технике, в частности к способам и устройствам для измерения шероховатости поверхности оптическими методами, и может быть использовано для измерения среднеквадратичной высоты микронеровностей
Наверх