Способ нанесения покрытий из металлических порошков

Изобретение относится к порошковой металлургии, в частности к способам нанесения покрытий из порошков на поверхности деталей. Предложенный способ включает нанесение порошкового материала на поверхность детали, ее нагрев до момента достижения на стыке поверхности детали с порошковым материалом температуры плавления и спекание порошкового материала. При достижении температуры плавления порошкового материала на стыке с поверхностью детали осуществляют изотермическую выдержку. Спекание проводят при достижении свободной поверхностью порошкового материала температуры спекания и поддержания ее при изотермической выдержке постоянной путем принудительного охлаждения свободной поверхности порошкового материала. В частных воплощениях изобретения охлаждение свободной поверхности порошкового материала осуществляют защитным газом. Техническим результатом изобретения является повышение качества покрытия и упрощение технологии его получения. 1 з.п. ф-лы.

 

Изобретение относится к порошковой металлургии, в частности к способам нанесения покрытий из порошков на поверхности деталей.

Известен способ нанесения покрытий из порошковых материалов на поверхность деталей, включающий нанесение "сырого" порошка, смешанного с флюсом, на поверхность детали, нагрев детали и изотермическую выдержку (Ярошевич В.К., Белоцерковский Н.А. "Антифрикционные покрытия из металлических порошков. - Минск: Наука и техника, 1981, 55-60 с.).

Однако данный способ не обеспечивает надежного сцепления порошкового слоя с поверхностью детали.

В качестве ближайшего аналога выбран способ нанесения покрытий из металлических порошков, включающий нанесение порошка, начальный нагрев до момента достижения на стыке поверхности детали с порошковым материалом температуры плавления, прекращение нагрева и повторное его возобновление при снижении температуры спекания порошка, при которой осуществляют изотермическую выдержку (патент РФ №2164966, кл. С 23 С 24/10, заявлен 29.06.1999, опубликован 10.04.2001 Бюл. №10).

Существенным недостатком данного способа является недостаточно высокое качество порошкового слоя по толщине покрытия и особенно на его поверхности. Из-за градиента температуры на стыке и на сводной поверхности порошка температура спекания на поверхности часто бывает недостаточной для образования прочного каркаса покрытия, особенно при большой толщине порошкового слоя. Кроме этого, снижение температуры от температуры плавления до температуры спекания происходит довольно быстро, особенно при искусственном охлаждении свободной поверхности детали, что усложняет контроль и может явиться причиной брака.

Технической задачей, на решение которой направлено заявленное техническое решение, является повышение качества покрытия и упрощение технологии его получения.

Указанная техническая задача решается тем, что в способе нанесения покрытий из металлических порошков, включающем нанесение порошкового материала на поверхность детали, ее нагрев до момента достижения на стыке поверхности детали с порошковым материалом до температуры плавления последнего, спекание порошкового материала, в отличие от прототипа, при достижении температуры плавления порошкового материала на стыке с поверхностью детали осуществляют изотермическую выдержку, а спекание производят при достижении свободной поверхностью порошкового материала температуры спекания и поддержания ее при изотермической выдержке постоянной путем принудительного охлаждения свободной поверхности порошкового материала. Охлаждение свободной поверхности порошкового материала осуществляют защитным газом.

Проведение процесса указанным способом обеспечивает расплавление порошкового материала на стыке с поверхностью детали и смачивание последней, что обеспечивает надежное сцепление, а принудительное охлаждение свободной поверхности порошкового материала защитным газом позволяет поддерживать температуру спекания в его объеме и получать гарантированное качество покрытия.

Способ осуществляется следующим образом.

На стальную поверхность наносят порошковый материал и контролируют температуру на их стыке и на свободной поверхности порошка. При достижении температуры на стыке до температуры плавления порошкового материала осуществляют изотермическую выдержку, поддерживая эту температуру постоянной. Одновременно контролируют температуру на свободной поверхности порошкового материала. Как только она достигает заданной температуры спекания (0,75-0,95 от температуры плавления), ее поддерживают постоянной в процессе изотермической выдержки принудительным охлаждением свободной поверхности, например, путем обдува воздухом. Однако во избежание окисления порошкового материала целесообразней охлаждение вести защитным газом.

Пример реализации способа.

На стальную пластинку толщиной 4 мм наносят покрытие из бронзового порошка марки Бр. 010С10. Предварительно поверхность пластинки, подлежащую покрытию, флюсуют из водного раствора буры и высушивают в печи при температуре 100°С. Затем на офлюсованную поверхность наносят слой порошка и закрывают специальным экраном, который имеет штуцера для подвода и отвода защитного газа. Индукционный нагрев осуществляют со стороны свободной поверхности детали с помощью высокочастотного генератора ВЧГ10/044. Температуру свободной поверхности порошкового материала контролируют радиационным пирометром "Тера-50", установленным сверху на экране, а температуру на стыке - термопарой.

Нагрев ведут до температуры на стыке, равной температуре плавления бронзы (950°С), после чего при этой температуре осуществляют изотермическую выдержку. Одновременно контролируют температуру на свободной поверхности порошкового материала. Как только она достигает температуры спекания (870°С), включают подачу защитного газа (окись углерода) и охлаждают свободную поверхность порошкового материала. Изменяя величину расхода защитного газа, поддерживают постоянной температуру спекания (850-870°С) в процессе изотермической выдержки.

Изучение физико-механических свойств образцов, изготовленных по предлагаемому и известному способам, показало, что прочность сцепления у них примерно одинакова, но имеются различия в прочности, плотности и пористости спеченных слоев.

Плотность и пористость спеченных образцов определяли по ГОСТ 18898-73 гидростатическим методом, а предел прочности при изгибе по ГОСТ 18228-82.

Исследования двух партий образцов показали, что образцы, изготовленные по предлагаемому способу, имеют в среднем на 10% меньшую пористость и на 20% выше прочность по сравнению с образцами, изготовленными по известному способу.

Использование предлагаемого способа позволяет получать порошковые покрытия с большей прочностью, чем по известному способу. Изготавливаемые из таких биметаллических материалов подшипники скольжения имеют большую несущую способность и износостойкость.

1. Способ нанесения покрытий из металлических порошков, включающий нанесение порошкового материала на поверхность детали, ее нагрев до момента достижения на стыке поверхности детали с порошковым материалом температуры плавления, спекание порошкового материала, отличающийся тем, что при достижении температуры плавления порошкового материала на стыке с поверхностью детали осуществляют изотермическую выдержку, а спекание проводят при достижении свободной поверхностью порошкового материала температуры спекания и поддержании ее при изотермической выдержке постоянной путем принудительного охлаждения свободной поверхности порошкового материала.

2. Способ по п.1, отличающийся тем, что охлаждение свободной поверхности порошкового материала осуществляют защитным газом.



 

Похожие патенты:
Изобретение относится к способам упрочнения твердосплавного алмазного инструмента и может быть использовано в машиностроении и горнодобывающей промышленности. .

Изобретение относится к области нанесения металлического адгезионного слоя для термически напыленных керамических теплоизоляционных слоев на металлические конструкционные детали.

Изобретение относится к способам нанесения износостойких композиционных материалов на внутренние и наружные поверхности цилиндрических стальных деталей методом порошковой металлургии и направлено на улучшение качества покрытия с одновременным уменьшением расхода порошка, расширение функциональных возможностей способа и упрощение технологии.

Изобретение относится к порошковой металлургии, в частности к способам нанесения покрытий из порошковых материалов на поверхности деталей. .

Изобретение относится к порошковой металлургии, в частности к способам нанесения покрытий из порошковых материалов на поверхности деталей. .
Изобретение относится к электронно-лучевой обработке металлов и может быть использовано для создания износостойких, упрочняющих и коррозионно-стойких покрытий с помощью пучка релятивистских электронов на изделиях из титановых сплавов.
Изобретение относится к электронно-лучевой наплавке преимущественно плоских длинномерных изделий и может быть использовано для изготовления и восстановления инструмента, применяемого при деревообработке, для рубки электрического кабеля или для резки бумаги.

Изобретение относится к металлургии (покрытие металлических покрытий) и может быть использовано в машиностроении (изготовление и ремонт машин) для получения (наплавки, напайки) тонких слоев на различные поверхности деталей, например, для повышения износостойкости, улучшения самозатачиваемости или компенсации износа деталей машин.
Изобретение относится к металлургии, а именно к защите жаропрочных конструкционных материалов, работающих в условиях воздействия агрессивных, высокотемпературных, высокоскоростных газовых потоков.

Изобретение относится к способам получения износостойких поверхностей стальных деталей методом порошковой металлургии и может найти применение для получения износостойкого слоя на стальных деталях узлов трения

Изобретение относится к сплаву на основе кобальта в порошкообразной форме для нанесения покрытия на объекты, подвергающиеся эрозии жидкостями, в частности на лопатки паровых турбин, а также к способу нанесения такого сплава

Изобретение относится к способам получения рабочих слоев на поверхностях полых цилиндрических деталей и может быть использовано для изготовления биметаллических втулок с покрытием одновременно на внутренней и наружной поверхностях или только на наружной поверхности, а также для восстановления таких деталей

Изобретение относится к покрытиям для защиты от износа металлических конструктивных элементов машин

Изобретение относится к электронно-лучевой обработке металлов и может быть использовано для создания коррозионно-стойких покрытий на изделиях из титана

Изобретение относится к способу восстановления изношенных поверхностей бронзовых втулок скольжения. Осуществляют термоциклическую диффузию металлических порошков в восстанавливаемую поверхность втулок скольжения. Циклический нагрев втулки и порошка на основе бронзы выполняют до температуры расплава порошка и диффузии его в металл втулки. Выдерживают при температуре начального диффузионного процесса. Затем охлаждают до температуры фазового спекания порошка и выдерживают в данном интервале температуры. Выполняют вторичный нагрев до температуры расплава порошка с выдержкой для приращения восстанавливаемого диффузионного слоя и затем охлаждение. В результате достигается сокращение времени и упрощение процесса термодиффузии при восстановлении работоспособности изношенных оловянистых и алюмино-железистых бронзовых втулок скольжения. 1 ил.

Изобретение относится к области химико-термической обработки стальных изделий и может быть использовано, преимущественно, при производстве систем водяного охлаждения, систем холодного и горячего водоснабжения. Способ диффузионного нанесения защитного покрытия из сплава циркония и кремния на поверхность стальных изделий включает подготовку диффузионной среды из смеси порошков, содержащих пассивирующие элементы в виде циркония и кремния, обеспечение контакта стальных изделий с диффузионной средой, нагрев стальных изделий с диффузионной средой до температуры восстановления упомянутых пассивирующих элементов, составляющей 900-950°C, последующее охлаждение и извлечение стальных изделий из отработанной диффузионной среды, содержащей упомянутые пассивирующие элементы. Для подготовки диффузионной среды используют 60-65% цирконового концентрата, имеющего в своем составе пассивирующие элементы в виде циркония и кремния, 15-20% чистого фторцирконата кальция и 15-20% чистого флюорита, полученную смесь переводят в твердожидкое состояние с образованием расплавленных фторидов и оксидных твердых растворов. Затем полученные расплавленные фториды и оксидные твердые растворы в течение 15-30 минут подвергают активированию током при напряжении 42-50 В с образованием нестабильного твердого электролита на основе оксидов циркония и кремния, содержащего фторцирконат и фторид кальция по границам зерен. Затем упомянутый электролит подвергают медленному охлаждению до образования монолитного состояния, после чего охлажденный упомянутый электролит размалывают до состояния порошка. Обеспечивают контакт стальных изделий с диффузионной средой путем засыпки полученной порошковой смесью стальных изделий. Охлаждение стальных изделий в диффузионной смеси проводят до температуры 400-450°C. Обеспечивается увеличение безремонтного срока службы стальных изделий с защитным покрытием до срока службы основного сооружения за счет увеличения толщины защитного слоя, а также обеспечение его экономической чистоты. 1 табл., 2пр.

Изобретение относится к области управления переносом тепловой энергии через материалы, а именно к термобарьерному покрытию и способу его нанесения. Термобарьерное покрытие, нанесенное на подложку, содержит металлические наночастицы с нанесенным на них стекловидным составом, образующие упорядоченную структуру и вплавленные в стекловидную матрицу для удержания в ней. Наночастицы расположены на расстояниях друг от друга, равных длине волны фононов, переносящих тепловую энергию через упомянутое покрытие. Способ нанесения термобарьерного покрытия на подложку включает нанесение стекловидного состава на металлические наночастицы, расположенные на расстояниях друг от друга, равных длине волны фононов, переносящих тепловую энергию через упомянутое покрытие, и вплавление стекловидного состава, нанесенного на металлические наночастицы, в стеклянную матрицу для удерживания в ней упомянутых наночастиц. Обеспечивается термобарьерное покрытие, регулирующее поток тепла через материал с помощью механизма фононной интерференции, которое является надежным и прочным и которое может быть нанесено на относительно большие поверхности. 2 н. и 13 з.п. ф-лы, 14 ил.

Изобретение относится к аппаратам химических производств, стойких к воздействию концентрированных кислот, в частности к аппаратам по переработке отработавшего ядерного топлива на начальной стадии переработки, на которой производится растворение элементов отработанных ТВЭЛОВ в концентрированной азотной кислоте при повышенных температурах для последующей экстракции из раствора изотопов урана, плутония и продуктов распада в реакторе. Корпус аппарата изготавливают из титановых листов, на которые предварительно наплавляют электронным пучком слой покрытия из сплава на основе титана, содержащий в качестве легирующих элементы из ряда: тантал и/или ниобий, цирконий, молибден с суммарной концентрацией легирующих компонентов 5-60 вес.%. Листы подвергают формовке для придания им нужной формы. Стыки листов после формовки соединяются электродуговой сваркой в среде инертного газа таким образом, чтобы с внутренней стороны аппарата шов являлся сплошным, герметичным и проходил по слою антикоррозионного покрытия соединяемых листов, а с внешней стороны - по титановой основе. Обеспечивается получение корпусов аппаратов химических производств, устойчивых к концентрированной азотной и серной кислотам при температурах вплоть до температур их кипения, что позволяет увеличить межремонтный период эксплуатации или полностью исключить необходимость доступа персонала к аппарату в течение всего периода его эксплуатации. 3 н. и 15 з.п. ф-лы, 1 табл., 7 ил., 1 пр.

Изобретение относится к области цветной металлургии, в частности к способу получения сплава из порошков металлов с разницей температур плавления с помощью пучка релятивистских электронов на плоских подложках из титана и может быть использовано для создания биоинертных сплавов для медицинских приложений. Готовят порошковую смесь из модифицирующего, смачивающего и флюсообразующего компонентов при следующем соотношении компонентов, мас.%: модифицирующий компонент 36-48, смачивающий компонент 12-24, флюсообразующий компонент - остальное. Затем наносят порошковую смесь на металлическую подложку. Помещают подложку с нанесенным на нее слоем порошковой смеси под сканирующий пучок релятивистских электронов. Массовую толщину слоя порошка (σ) определяют из соотношения σ=K⋅(Е-b), где K=(0,2-0,4) [г⋅см-2⋅МэВ-1], E - энергия электронов в МэВ, b=0,21 МэВ. Проводят обработку каждой точки подложки в течение 0,5-2,0 секунд с получением наплавленного слоя. В качестве модифицирующего компонента используют порошок ниобия. Техническим результатом изобретения является получение сплава с заданным элементным составом и структурой, преимущественно, медицинского назначения. 3 з.п. ф-лы, 1 ил., 2 пр., 2 табл.
Наверх