Способ подачи газообразного топлива в силовой привод из магистрального газопровода и устройство для его осуществления

Изобретения предназначены для использования на объектах газотранспортных предприятий и относятся к области управления подачи газообразного топлива непосредственно из магистрального газопровода к силовому приводу (например, газотурбинному двигателю). Способ и устройство позволяют повысить надежность работы, увеличить ресурс и существенно снизить себестоимость объекта предполагаемого изобретения. В способе подачи газообразного топлива в силовой привод из магистрального газопровода, включающем фильтрацию и систему понижения давления газообразного топлива, газообразное топливо подают в стопорный клапан взрывозащищенный, отсекающий газообразное топливо при превышении частоты вращения силового привода свыше 105% от максимального значения, а управление дозатором газа взрывозащищенным осуществляют блоком управления в соответствии с разностью ΔI=Iупр-Ioc тока управления, поступающего от электронного регулятора в цифровом или аналоговом формате, и тока обратной связи, поступающего в цифровом или аналоговом формате от датчика дозирующего элемента дозатора газа взрывозащищенного и зависящего от положения дозирующего элемента, что, в свою очередь, уменьшает давление газообразного топлива до величин, определяемых типом силового привода, далее газообразное топливо через клапан аварийной остановки, срабатывающий на отсечение газа, когда давление на выходе из него превышает максимально допустимый предел для данного типа силового привода, подают в силовой привод, где

Δi - разность сигналов,

Iупр - сигнал от электронного регулятора,

Ioc - сигнал тока обратной связи от датчика положения дозирующего элемента. Устройство для осуществления способа подачи газообразного топлива в силовой привод из магистрального газопровода, включающее систему фильтрации и понижения давления газообразного топлива, подаваемого в силовой привод, включает в себя систему управления и контроля подаваемого в силовой привод газообразного топлива, содержащую стопорный клапан взрывозащищенный, взаимодействующий с дозатором газа взрывозащищенным, управляемым блоком управления по команде от электронного регулятора, и клапан аварийного останова, взаимодействующий с дозатором газа. 2 н.п. ф-лы, 1 ил., 3 табл.

 

Способ подачи газообразного топлива в силовой привод из магистрального газопровода и устройство для его осуществления, предназначенные для использования на объектах газотранспортных предприятий ОАО "Газпром".

Изобретение относится к области управления подачи газообразного топлива непосредственно из магистрального газопровода к силовому приводу, например газотурбинному силовому агрегату, обеспечивающему работу компрессорных станций или дожимных компрессорных станций при транспортировке газообразного топлива на большие расстояния.

Способ и устройство включают в себя систему управления и контроля параметров подаваемого в силовой привод газообразного топлива, а также узлы и агрегаты, обеспечивающие этот процесс.

В качестве прототипа выбран блок подготовки топливного промышленного газа (БПТПГ) [Типовые технические требования на проектирование компрессорных станций и дожимных компрессорных станций ВРД 39-1.8-055-2002 (ТТТ КС и КДС ВРД 39-1.8-055-2002)].

Прототип включает в себя цикл подготовки газообразного топлива (фильтрацию, суфлирование и подогрев), редуцирование и подачу его в силовой привод.

Работа прототипа заключается в следующем: газообразное топливо, поступающее через систему фильтров из магистрального газопровода под давлением (7,5-8,0) МПа, подвергается суфлированию (осушению) и подогреву до температуры 283К и выше, подается в блок редукторов, состоящий из двух редукторов, в которых последовательно происходит понижение давления газа до (2,5-2,7) МПа в первом редукторе, до (1,2-2,4) МПа во втором редукторе, и направляется в силовой привод.

Недостатками прототипа являются:

1) предварительная подготовка газообразного топлива:

- суфлирование (осушка);

- подогрев до температуры 283К и выше;

2) система запорных устройств, включающая задвижки (в основном, приводящиеся в действие вручную);

3) разветвленная сеть газопроводов;

4) блок редукторов с низким ресурсом работы (частые отказы, например, в случае колебания магистрального давления);

5) большие габариты конструкции;

6) низкий ресурс устройства;

7) высокая цена.

Целью настоящего изобретения является повышение надежности работы, увеличение ресурса и снижение себестоимости конструкции.

Цель предлагаемого изобретения достигается тем, что газообразное топливо подается под давлением в диапазоне (8,2-11,72) МПа в стопорный клапан взрывозащищенный (СКВ), отсекающий подачу топлива в силовой привод при превышении частоты вращения ротора силового привода свыше 105% от максимальной, а управление приводом дозирующего элемента осуществляется шаговым или моментным электродвигателем, управляемым блоком управления (БУ) в соответствии с сигналом (Iупр), поступающим от электронного регулятора (ЭР) (в цифровом или аналоговом формате) в диапазоне от Iупр.=4 мА до Iупр=20 мА, и сигналом тока обратной связи (Iос), поступающим от датчика положения дозирующего элемента (в цифровом или аналоговом формате) в диапазоне от Iос=4 мА до Iос=20 мА и зависящим от положения дозирующего элемента (ДГВ), в соответствии с разностью ΔI=Iупр-Iос, что, в свою очередь, уменьшает давление до (0,5-2,4) МПа, в зависимости от потребности силового привода, причем срабатывание клапана аварийного останова (КАО) на отсечку происходит в тот момент, когда давление на выходе из него превышает установленное регламентом эксплуатации силового привода максимальное давление, причем в предлагаемом изобретении происходит замена блока подготовки топливного промышленного газа (БПТПГ) устройством, включающим в себя принципиально новые узлы: стопорный клапан взрывозащищенный (СКВ), дозатор газа взрывозащищенный (ДГВ), клапан аварийного останова (КАО), блок управления (БУ) и электронный регулятор (ЭР).

Устройство узлов в вышеописанной технологии позволяет исключить операции суфлирования (осушения) и подогрева газообразного топлива.

Блок-схема (фиг.1) предлагаемого изобретения для подачи газообразного топлива в силовой привод из магистрального газопровода наглядно показывает суть взаимодействия узлов системы.

Система включает в себя: газопроводы (1), стопорный клапан взрывозащищенный (СКВ) (2), дозатор газа взрывозащищенный (ДГВ) (3), клапан аварийного останова (КАО) (4), электронный регулятор (ЭР) (5) и блок управления (БУ) (6).

Стопорный клапан взрывозащищенный (СКВ) осуществляет защиту силового привода путем отсечки подачи газообразного топлива при превышении частоты вращения ротора силового привода свыше 105% от максимально допустимой в зависимости от типа силового привода значения в ответ на дискретную электрическую команду.

Рабочие параметры СКВ приведены в табл.1.

СКВ взаимодействует с дозатором газа (ДГВ), с электронным регулятором (ЭР) или с пультом управления диспетчера и другими элементами системы (по согласованию).

В состав СКВ входит:

- запорный элемент;

- исполнительный механизм;

- сигнализатор положения запорного элемента.

Конструктивное исполнение СКВ, включая электросоединители, - взрывозащищенное, взрывобезопасное, пожаробезопасное.

Дозатор газа взрывозащищенный (ДГВ) предназначен для управления подачей газообразного топлива к потребителю в соответствии с аналоговыми или цифровыми командами, поступающими с электронного регулятора (ЭР).

Газ поступает в дозатор газообразного топлива (ДГВ) под давлением с учетом потерь (8,1-11,61) МПа, где давление автоматически понижается и подается потребителю на выходе из него с давлением от 0,5 МПа до 2,4 МПа в зависимости от назначения.

Управление приводом дозирующего элемента осуществляется шаговым или моментным электродвигателем, управляемым блоком управления (БУ) в соответствии с сигналом (Iупр), поступающим от электронного регулятора (ЭР) (в цифровом или аналоговом формате) в диапазоне от Iупр.=4 мА до Iупр=20 мА, и сигналом тока обратной связи (Iос), поступающим от датчика положения дозирующего элемента (в цифровом или аналоговом формате) в диапазоне от Iос=4 мА до Ioc=20 мА и зависящим от положения дозирующего элемента (ДГВ), в соответствии с разностью ΔI=Iупр-Ioc, изменяя его положение с высокой точностью, а следовательно, и расход газа от Gmin до Gmax.

Диапазон величины управляющего тока и тока обратной связи от 4 мА до 20 мА является международным стандартом для интерфейсов.

Зависимость величины расхода газа (Gг, %) от величины тока обратной связи (Iос, мА) и формы проходного сечения дозирующего элемента - нелинейная, полученная эмпирическим путем, зависит от применяемого силового привода.

Соединение ДГВ с БУ осуществляется с помощью кабеля длиной не более 20 м.

Рабочие параметры ДГВ приведены в табл.2.

ДГВ взаимодействует со стопорным клапаном (СКВ), подчиняясь командам блока управления дозатором (БУ) и электронного регулятора (ЭР), и другими элементами системы.

В состав ДГВ входят:

- дозирующий элемент;

- привод дозирующего элемента (шаговый или моментный двигатель);

- датчик положения дозирующего элемента.

Конструктивное исполнение ДГВ, включая электросоединители, - взрывозащищенное, взрывобезопасное, пожаробезопасное.

Клапан аварийного останова (КАО) предназначен для перекрытия магистрали подачи газообразного топлива к потребителю при давлении газа, превышающем пределы (1,0-2,4) МПа на выходе КАО в зависимости от того, какое давление является рабочим в силовом приводе.

Рабочие параметры КАО приведены в табл.3.

КАО взаимодействует с дозатором газа (ДГВ), стопорным клапаном (СКВ) и другими элементами системы.

В состав КАО входят:

- запорный элемент;

- чувствительный элемент давление газа на выходе из КАО;

- визуальный указатель положения запорного элемента;

- устройство ручного открытия запорного элемента.

Отфильтрованный газ по газопроводу (1) поступает в СКВ (2). При подаче питания на исполнительный механизм СКВ и при наличии давления газа на входе в привод его запорный элемент занимает положение "Открыто", тем самым, обеспечивая подачу газообразного топлива к ДГВ (3). Для сохранения положения "Открыто" запорного элемента исполнительный механизм СКВ находится под током, при этом электрический ток в цепи сигнализатора положения запорного элемента отсутствует. При снятии электрической команды с исполнительного механизма СКВ его запорный элемент займет положение "Закрыто", тем самым, прекращая подачу газообразного топлива к ДГВ (3), при этом в цепи сигнализатора положения запорного элемента появится электрический ток.

После СКВ (2) газообразное топливо поступает в ДГВ (3), в котором происходит дозирование расхода газа, подаваемого к потребителю, в соответствии с цифровой или аналоговой командой поступающей от ЭР (5) к БУ (6), причем непосредственное управление приводом дозирующего элемента ДГВ (3) осуществляется БУ (6).

Далее газообразное топливо поступает в клапан аварийного останова (КАО) (4), в котором при давлении газа на выходе из КАО (4), превышающем значение настройки чувствительного элемента КАО, запорный элемент КАО (4) занимает положение "Закрыто", тем самым, прекращая подачу газа к потребителю. После закрытия запорный элемент КАО (4) фиксируется в положении "Закрыто", причем контроль за положением запорного элемента КАО осуществляется по визуальному указателю, а приведение запорного элемента КАО в положение "Открыто" осуществляется ручным устройством.

После КАО газообразное топливо поступает в силовой привод.

СПОСОБ ПОДАЧИ ГАЗООБРАЗНОГО ТОПЛИВА В СИЛОВОЙ ПРИВОД ИЗ МАГИСТРАЛЬНОГО ГАЗОПРОВОДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Таблица 1

Рабочие параметры СКВ
№ п/пНаименование параметраРазмерностьВеличина
1Вес привода (сухого без транспортировочных устройств)кгне более 50
2Рабочее телогаз
3Давление газа на входе в приводМПа0,65÷11,72
4Допустимые утечки газа по запорному элементусм3не более 10
5Допустимые утечки газа в дренажсм3не более 10
6Время открытия запорного элемента при подаче электрического сигнала на исполнительный механизм и давлении газа на входе в привод 5 МПасне более 2
7Время закрытия запорного элемента при снятии электрического сигнала с исполнительного механизма и давлении газа на входе в привод 5 МПасне более 0,15
8Потери давления газа на приводе при расходе 1,39 кг/с при давлении газа на входе 2,8 МПаМПане более 0,05

СПОСОБ ПОДАЧИ ГАЗООБРАЗНОГО ТОПЛИВА В СИЛОВОЙ ПРИВОД ИЗ МАГИСТРАЛЬНОГО ГАЗОПРОВОДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Таблица 2

Рабочие параметры ДГВ
№ п/пНаименование параметраРазмерностьВеличина
1Вес привода (сухого без транспортировочных устройств)кгне более 35
2Рабочее телогаз
3Номинальная чистота фильтрации газа на входе в приводмкмне более 40
4Температура газа на входе в приводК253÷393
5Давление газа на входе в приводМПа
минимальное0,5
максимальное11,74
6Диапазоны регулируемого расхода (Gг) при давлении на входе в привод Рвх=10-2 МПакг/с0,003...0,7 0,003...0,35 0,003...0,17
7Утечка газа в дренажСм3не более 30
8Уровень и вид защиты1ExdsIICT4
9Степень защиты изделия оболочкой1Р54
10Взрывобезопасностьпо ГОСТ 12.1.010-76
11Пожарная безопасностьпо ГОСТ 12.1.004-91

СПОСОБ ПОДАЧИ ГАЗООБРАЗНОГО ТОПЛИВА В СИЛОВОЙ ПРИВОД ИЗ МАГИСТРАЛЬНОГО ГАЗОПРОВОДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Таблица 3

Рабочие параметры КАО
№ п/пНаименование параметраРазмерностьВеличина
1Вес привода (сухого без транспортировочных устройств)кгне более 30
2Рабочее телогаз
3Температура газа на входе в приводК253÷393
4Давление газа на входе в приводМПане более 2,5
5Давление газа на выходе из привода, при котором происходит закрытие запорного элементаМПа1,0÷2,5
6Допустимые утечки газа по запорному элементуСм3не более 10
7Уровень и вид защиты1ExdsIICT4
8Взрывобезопасностьпо ГОСТ 12.1.010-76
9Пожарная безопасностьпо ГОСТ 12.1.004-91

1. Способ подачи газообразного топлива в силовой привод из магистрального газопровода, включающий фильтрацию и понижение давления газообразного топлива, отличающийся тем, что газообразное топливо подают в стопорный клапан взрывозащищенный, отсекающий газообразное топливо при превышении частоты вращения силового привода свыше 105% от максимального значения, а управление дозатором газа взрывозащищенным осуществляют блоком управления в соответствии с разностью ΔI=Iупр-Ioc тока управления, поступающего от электронного регулятора в цифровом или аналоговом формате, и тока обратной связи, поступающего в цифровом или аналоговом формате от датчика дозирующего элемента дозатора газа взрывозащищенного и зависящего от положения дозирующего элемента, что, в свою очередь, уменьшает давление газообразного топлива до величин, определяемых типом силового привода, далее газообразное топливо через клапан аварийной остановки, срабатывающий на отсечение газа, когда давление на выходе из него превышает максимально допустимый предел для данного типа силового привода, подают в силовой привод, где

ΔI - разность сигналов,

Iупр - сигнал от электронного регулятора,

Ioc - сигнал тока обратной связи от датчика положения дозирующего элемента.

2. Устройство для осуществления способа подачи газообразного топлива в силовой привод из магистрального газопровода, включающее систему фильтрации и понижения давления газообразного топлива, подаваемого в силовой привод, отличающееся тем, что включает в себя систему управления и контроля подаваемого в силовой привод газообразного топлива, содержащую стопорный клапан взрывозащищенный, взаимодействующий с дозатором газа взрывозащищенным, управляемым блоком управления по команде от электронного регулятора, и клапан аварийного останова, взаимодействующий с дозатором газа.



 

Похожие патенты:

Изобретение относится к газовой промышленности и может быть использовано на компрессорных станциях, повышающих давление природного газа в ходе его транспортирования.

Изобретение относится к газовой промышленности и может быть использовано на компрессорных станциях, повышающих давление природного газа в ходе его транспортирования.

Изобретение относится к газовой промышленности и может быть использовано на компрессорных станциях, повышающих давление природного газа в ходе его транспортирования.

Изобретение относится к газовой промышленности и может быть использовано на компрессорных станциях, повышающих давление природного газа в ходе его транспортирования.

Изобретение относится к транспортировке газообразного углеводородного топлива по трубопроводам большой протяженности, проложенным по морскому дну. .

Изобретение относится к устройствам для надежного переключения всего потока природного газа с турбодетандера на газопровод с регулятором давления газа и может быть использовано на тепловых электрических станциях, сжигающих природный газ, на газокомпрессорных станциях магистральных газопроводов.

Изобретение относится к транспортировке газообразного углеводородного топлива по трубопроводам большой протяженности, проложенному по морскому дну. .

Изобретение относится к области газовой промышленности и может быть использовано при магистральном транспорте газа по многониточной системе газопроводов. .

Изобретение относится к области перемещения текучих сред по трубопроводам, а именно к системе транспортирования газа с низким давлением, и может быть использовано при изменении динамических и расходных характеристик перемещаемой текучей среды, предпочтительно, при изменении расхода перемещаемого газа в трубопроводе

Изобретение относится к добыче газа и транспортировке газообразного углеводородного топлива по трубопроводам большой протяженности, проложенным по морскому дну

Изобретение относится к газовой промышленности и может быть использовано для транспортировки газа по магистральным газопроводам, а также к электротехнической промышленности для передачи электроэнергии

Изобретение относится к способу доставки природного газа потребителю. Способ включает получение газовых гидратов, их перемещение потребителю, разложение газогидрата с получением газа и характеризуется тем, что газогидрат получают в виде водогидратной пульпы с содержанием частиц газогидрата около 50% ее объема. При этом процесс получения газовых гидратов осуществляют при термодинамических параметрах, соответствующих образованию газогидрата, с отбором тепла от смеси природного газа и воды водоледяной пульпой, предпочтительно, с крупностью частиц не более 10 мкм, с содержанием частиц льда около 50% объема водоледяной пульпы, которые равномерно распределяют по объему реактора, перевозку газогидратной пульпы осуществляют в герметичных, теплоизолированных грузовых помещениях транспортного средства, при термодинамических параметрах, исключающих разложение газогидрата, причем разложение газогидратной пульпы с отбором газа, по завершению его перевозки, осуществляют снижением давления в грузовом помещении транспортного средства до атмосферного. При этом водоледяную пульпу, образовавшуюся в процессе разложения газогидратной пульпы, возвращают, с сохранением ее температуры, к месту получение газовых гидратов, где повторно используют при производстве водоледяной пульпы, пригодной для производства газогидрата. Использование настоящего изобретения позволяет снизить энергетические, капительные и текущие затраты на получение газового гидрата, а также снизить материалоемкость оборудования, необходимого для реализации способа. 1 з.п. ф-лы, 5 ил.

Изобретение относится к устройству для подготовки природного газа для транспортирования, включающему реактор, сообщенный с источником газа и воды, средство охлаждения смеси воды и газа и средство поддержания давления в реакторе не ниже равновесного, необходимого для гидратообразования. Устройство характеризуется тем, что в качестве реактора использован резервуар, рассчитанный на давление более 1 МПа, теплоизолированный с возможностью поддержания температуры на уровне 0,2°C, снабженный средством перемешивания материала. При этом в качестве средства охлаждения смеси воды и газа использована тонкодисперсная водоледяная пульпа, для чего устройство содержит вакуумный льдогенератор, выполненный в виде теплоизолированного резервуара, сообщенного с источником морской воды и вакуумным выходом турбокомпрессора, предпочтительно выполненного с возможностью создания в резервуаре разряжения, равного по величине давлению тройной точки морской воды. Причем выход льдогенератора сообщен с отделителем льда от рассола, ледовый выход которого сообщен со смесителем льда и пресной воды. В свою очередь источник природного газа сообщен с газовым входом реактора и газовой турбиной турбокомпрессора, выполненной с возможностью использования энергии газов, продуктов сжигания природного газа, а второй вход реактора посредством пульпопровода льдосодержащей пульпы, снабженного первым пульповым насосом, сообщен с накопителем льдосодержащей пульпы, выполненным в виде теплоизолированного резервуара. При этом гидратный выход реактора пульпопроводом гидратсодержащей пульпы сообщен с накопителем гидратсодержащей пульпы, выполненным в виде теплоизолированного резервуара, с возможностью поддержания давления не ниже равновесного, исключающего диссоциацию гидратсодержащего материала, с возможностью отгрузки из него гидратсодержащей пульпы, кроме того, водяной выход реактора сообщен со смесителем льда и пресной воды, при этом выход смесителя льда и пресной воды посредством пульпопровода льдосодержащей пульпы, снабженного вторым пульповым насосом, сообщен с накопителем льдосодержащей пульпы. Изобретение обеспечивает снижение энергозатрат на получения гидратов и снижение массо-габаритных характеристик комплекта оборудования, необходимого для получения гидратов. 3 з.п. ф-лы, 3 ил.

Изобретение относится к способу подготовки природного газа для транспортирования, включающий получение газовых гидратов путем смешения газа с водой в реакторе непрерывного охлаждения и поддержания требуемых температур полученной смеси с одновременным поддержанием давления не ниже равновесного, необходимого для гидратообразования. Способ характеризуется тем, что процесс получения газовых гидратов осуществляют при температуре +0,2°C и давлении 1 МПа, при этом для охлаждения смеси газа с водой используют водоледяную пульпу, предпочтительно, с крупностью частиц не более 10 мкм, которые равномерно распределяют по объему реактора, при этом содержание льда составляет около 50% ее объема. Использование настоящего изобретения позволяет снизить энергетические, капительные и текущие затраты на получение газового гидрата, а также снизить материалоемкость оборудования, необходимого для реализации способа. 2 з.п. ф-лы, 3 ил.

Изобретение относится к газовой промышленности и может быть использовано при трубопроводном транспорте природного газа. Предварительно подготавливают газ и подают его в газопровод под давлением, с периодическим дополнительным воздействием на поток транспортируемого газа на участках газопровода. В процессе подготовки газа из него формируют газогидратно-водяную пульпу с содержанием газогидрата до 50% от ее объема, которую перемещают по газопроводу при соблюдении термодинамических режимов, исключающих разложение газогидрата. На внутренней поверхности газопровода формируют тонкий газовый слой, для чего на отдельных участках, распределенных по его длине, осуществляют нагрев периметра газопровода с возможностью прогрева поверхности потока газогидратно-водяной пульпы до уровня, обеспечивающего разложение газогидрата. Техническим результатом является снижение энергетических, капитальных и текущих затрат на доставку газа потребителю и снижения гидравлического сопротивления на перемещения газогидратного материала. 1 з.п. ф-лы, 4 ил.

Изобретение относится к газовой промышленности и может быть использовано при трубопроводном транспорте природного газа. Устройство содержит магистральный трубопровод, средство подачи в трубопровод предварительно подготовленного газа под давлением и средства дополнительного воздействия на поток транспортируемого газа, распределенные на участках трубопровода. В качестве предварительно подготовленного газа используют газогидратно-водяную пульпу с содержанием газогидрата транспортируемого газа до 50% от ее объема, при величине частиц газогидрата до 3-5 мм. Трубопровод выполнен с возможностью поддержания в нем термодинамических режимов, исключающих разложение газогидрата. По длине трубопровода распределены узлы нагрева, содержащие индукторы, выполненные с возможностью нагрева периметра трубопровода до температуры, обеспечивающей возможность прогрева поверхности потока газогидратно-водяной пульпы до уровня, обеспечивающего разложение газогидрата в ее поверхностном слое. Техническим результатом является снижение энергетических, капитальных и текущих затрат на доставку газа потребителю, а также снижение гидравлического сопротивления на перемещения газогидратного материала. 4 ил.

Изобретение относится к комплексу для доставки природного газа потребителю, включающему средство его трансформирования в газогидрат. Средство содержит реактор, сообщенный с источником газа и воды, средство охлаждения смеси воды и газа и средство поддержания давления в реакторе не ниже равновесного, необходимого для гидратообразования, средство отгрузки газогидрата в транспортное средство снабженное грузовыми помещениями, выполненными с возможностью поддержания термодинамического равновесия, исключающего диссоциацию газогидрата, и средство разложения газогидрата с получением газа. Комплекс характеризуется тем, что реактор выполнен с возможностью формирования газогидратной пульпы в виде резервуара, рассчитанного на давление более 1 МПа, теплоизолированного с возможностью поддержания температуры на уровне 0,2°С. При этом реактор выполнен с возможностью отвода тепла гидратообразования тонкодисперсной водоледяной пульпой, для чего средство охлаждения смеси воды и газа содержит вакуумный льдогенератор, выполненный в виде теплоизолированного резервуара сообщенного с источником морской воды и вакуумным выходом турбокомпрессора, при этом выход льдогенератора, сообщен с отделителем льда от рассола, ледовый выход которого сообщен со смесителем льда и пресной воды, причем источник природного газа сообщен с газовым входом реактора и газовой турбиной турбокомпрессора льдогенератора, а второй вход реактора посредством пульпопровода льдосодержащей пульпы сообщен с выходом накопителя льдосодержащей пульпы, выполненного в виде теплоизолированного резервуара, при этом гидратный выход реактора первым пульпопроводом гидратсодержащей пульпы сообщен с накопителем гидратсодержащей пульпы, а водяной выход реактора сообщен со смесителем льда и пресной воды, при этом выход смесителя льда и пресной воды посредством второго пульпопровода льдосодержащей пульпы сообщен со входом накопителя льдосодержащей пульпы, кроме того, средства отгрузки газогидрата включают пульповый насос и задвижку, установленные на выпускном патрубке накопителя гидратсодержащей пульпы, выполненном с возможностью разъемного соединения с приемным патрубком грузового помещения транспортного средства, снабженным задвижкой, при этом грузовое помещение транспортного средства выполнено с возможностью разъемного соединения с приемным патрубком разгрузочного компрессора, выход которого сообщен с газгольдером. Использование настоящего изобретения позволяет снизить энергетические, капитальные и текущие затраты для получения газового гидрата. 6 з.п. ф-лы, 5 ил.

Способ и система предназначены для ремонтных работ. Способ включает откачку газа из участка секции, опрессовку и закачку газа в участок секции, опрессовку и закачку газа после замены или ремонта участка секции, при этом для опрессовки участка секции после его замены или ремонта закачивают в него продукты сгорания при давлении Рк>75 кгс/см2, затем понижают давление и закачивают в участок секции с двух сторон порции газифицированного азота, полученного в устройстве газификации азота, через дополнительно установленный трубопровод, соединяющий этот участок с соседней секцией, вытесняют продукты сгорания и порции газифицированного азота закачкой природного газа под действием столба природного газа, приводимого в действие штатными нагнетателями под рабочим давлением магистрали, из участка секции при опрессовке выделяют небольшое количество газифицированного азота, который направляют в устройство сжижения азота. Система включает штатные турбокомпрессоры с приводом от авиационных двигателей, источник рабочего тела, компрессорное оборудование с охлаждением готового рабочего тела, установленное между источником рабочего тела и участком магистральной трубы, автоматику и регуляторы управления процессом перекачки газа по трубопроводам. Система снабжена газогенератором продуктов сгорания, сообщенным с входом в участок секции, устройством сжижения азота, получаемого из продуктов сгорания, отобранных из участка секции, и сообщенным с его выходом, устройством газификации сжиженного азота с каналом подвода газифицированного азота на вход и выход участка секции, при этом участок секции сообщен дополнительным трубопроводом с соседним участком другой секции. Технический результат - уменьшение вредных выбросов в атмосферу. 2 н. и 2 з.п. ф-лы, 3 ил.
Наверх