Способ дистанционного досмотра цели в контролируемой области пространства

Изобретение относится к области дистанционного обнаружения объектов и измерения их характеристик в режиме реального времени и, в частности, может быть использовано для обнаружения взрывчатых веществ, скрытых на теле человека или в пассажирском багаже. Достигаемым техническим результатом является обеспечение возможности эффективного скрытного дистанционного досмотра движущейся цели, а также получение количественной информации о диэлектрической проницаемости и эквивалентной массе компонентов цели и их классификация по признаку проводник-диэлектрик. Согласно изобретению эта задача решается за чет того, что в способе дистанционного досмотра цели в контролируемой области пространства, включающем облучение этой области СВЧ-излучением с помощью двух или более элементарных излучателей, регистрацию отраженного от контролируемой области сигнала с помощью одного или более параллельных каналов регистрации, когерентную обработку зарегистрированного сигнала и отображение полученной в результате обработки информации, облучение контролируемой области и регистрацию отраженного от нее сигнала осуществляют в полосе частот, ширину которой определяют из соответствующего условия. 7 ил.

 

Изобретение относится к области дистанционного обнаружения объектов и измерения их характеристик в режиме реального времени и, в частности, может быть использовано для обнаружения взрывчатых веществ, скрытых на теле человека или в пассажирском багаже. В условиях реально существующей террористической угрозы важное место среди технических средств обеспечения безопасности занимают системы досмотра человека и багажа, основанные на различных физических принципах. Наиболее широкое распространение получили металлодетекторы (ручные и арочного типа), рентгеновские устройства, анализаторы паров. К сожалению, средства технического обеспечения безопасности и предотвращения террористических актов, как правило, отстают в своем развитии от меняющихся методов, используемых террористами. Одним из важнейших направлений контртеррористических действий является обнаружение и своевременная нейтрализация террориста-смертника, проносящего на своем теле скрытое взрывное устройство, так называемую «суицидную» бомбу. В этом случае требования, предъявляемые к системам обеспечения безопасности, непременно включают три условия: скрытность досмотра, дистанционность досмотра, возможность досмотра движущихся объектов в режиме реального времени. Из многообразия технических средств противодействия такой угрозе, существующих на сегодняшний день, ни одно не удовлетворяет вышеназванным условиям. Даже при не скрытном процессе досмотра все используемые технические способы досмотра обладают недостатками, позволяющими маскировать запрещенные к проносу или провозу в багаже вещества. Весьма широко распространенные детекторы металла не эффективны при обнаружении взрывных устройств с малым содержанием металла, которое в современных схемах инициализации заряда может быть выведено за порог чувствительности детекторов. Кроме того, любое керамическое или пластиковое оружие не обнаруживается данным типом устройств. Детекторы паров перестают работать при герметизации опасных веществ. Рентгеновские системы для досмотра человека могут быть применены лишь в исключительных случаях из-за угрозы причинения вреда здоровью, а при досмотре багажа даже при использовании процедуры идентификации, основанной на способе анализа поглощения рентгеновского излучения при двух значениях энергии, существует проблема обнаружения тонких слоев взрывчатых веществ. Одним из направлений поиска путей повышения эффективности досмотра является использование диапазонов электромагнитных волн, отличных от рентгеновского.

Известен способ формирования изображений в миллиметровом и субмиллиметровом диапазоне волн, заключающийся в формировании излучения в миллиметровом или субмиллиметровом диапазоне волн, состоящего из отдельных парциальных отличающихся друг от друга по физическим параметрам составляющих излучения, направлении сформированных парциальных составляющих излучения в зону наблюдения, приеме через фокусирующий элемент излучения, рассеянного в зоне наблюдения, преобразовании принятого излучения в сигналы, при этом каждый сигнал соответствует излучению, рассеянному определенной пространственной частью зоны наблюдения, и формировании по данным сигналам визуально воспринимаемого изображения зоны наблюдения, отличающийся тем, что каждую отдельную парциальную составляющую излучения дополнительно кодируют отличительно от кодирования других парциальных составляющих излучения, направляют указанные парциальные составляющие излучения на диффузор, расположенный для рассеяния падающего на него излучения в зону наблюдения и выполненный с функцией диффузного рассеяния падающего на него излучения или с функцией рассеяния падающего на него излучения пространственно различными частями диффузора с дополнительным различным кодированием рассеиваемого им излучения посредством различной модуляции рассеивающих свойств указанных различных частей диффузора и/или с функцией уменьшения пространственной когерентности рассеиваемого им излучения, после рассеяния указанного излучения в зоне наблюдения осуществляют фокусирование этого рассеянного излучения на приемное устройство, которое осуществляет прием этого излучения независимо из каждой пространственной части зоны наблюдения, путем преобразования указанного излучения в соответствующий набор сигналов, каждый из которых соответствует излучению, рассеянному в определенной пространственной части указанной зоны наблюдения, и образует из каждого сигнала указанного набора сигналов дополнительный набор парциальных сигналов, причем указанным парциальным сигналам соответствуют кодированные составляющие излучения, формируют парциальные изображения, для каждого из которых отдельный элемент изображения соответствует излучению, рассеянному пространственно определенной частью зоны наблюдения, и который сформирован из отдельного парциального сигнала соответствующего дополнительного набора парциальных сигналов, а затем осуществляют объединение парциальных изображений и/или их фрагментов для формирования результатного изображения объекта и его визуального отображения на дисплее, RU 2237267 С2.

Способ позволяет получать изображение предметов, в том числе и скрытых под одеждой на теле человека.

Способ основан на облучении досматриваемого объема электромагнитным излучением с возможностью кодирования-декодирования (излучающая апертура-диффузор-приемник), преобразовании рассеянного в досматриваемом объеме излучения с помощью фокусирующего элемента в изображение в плоскости изображений и регистрации полученного изображения с помощью матричного приемника. К недостаткам этого способа можно отнести следующее:

- обязательное наличие фокусирующего элемента при условии, что расстояние до объекта досмотра, который сам не является плоским, неизвестно и достаточно велико (˜1 м и более), приводит к необходимости использования короткофокусной оптики и, следовательно, вся объектная область отображается в плоскости, близкой к фокальной. Поэтому возможность идентификации обнаруженных объектов ограничена лишь анализом проекции 3-х-мерной формы объекта на плоскость изображений;

- отсутствие априорного алгоритма обработки парциальных изображений, получающихся при кодировании-декодировании заранее неизвестного объекта, может приводить к существенным искажениям реальной формы, к возникновению ложных объектов, что снижает эффективность обнаружения и идентификации объектов.

Известен способ дистанционного досмотра цели в контролируемой области пространства, включающий облучение этой области СВЧ-излучением с помощью двух или более элементарных излучателей, регистрацию отраженного от контролируемой области сигнала с помощью одного или более параллельных каналов регистрации, когерентную обработку отраженного сигнала и отображение полученной в результате обработки информации, US 5557283.

Источники и приемники поля расположены во множественных, известных заранее позициях. Результат досмотра основан на анализе 3-х-мерного изображения, получающегося в результате цифровой обработки зарегистрированного в широкой полосе частот излучения.

Данный способ принят в качестве прототипа настоящего изобретения.

При реализации способа-прототипа облучение СВЧ-излучением контролируемой области пространства происходит в полосе частот без корреляции ее ширины с радиальным пространственным разрешением изображения контролируемой области и интервалом времени регистрации, в течение которого возможна когерентная обработка зарегистрированного отраженного сигнала. Это обусловливает следующие недостатки способа-прототипа:

- невозможность использования способа-прототипа в случае движущегося досматриваемого объекта (цели), так как при движении объекта во время регистрации отраженного сигнала изменяется положение объекта относительно приемопередающих антенн, и нарушается условие применимости когерентной обработки зарегистрированного сигнала, а некогерентная обработка не позволяет получить изображение хорошего качества при неизвестной траектории досматриваемого объекта; таким образом, не обеспечивается скрытность досмотра объекта;

- низкое качество изображения, не позволяющее осуществлять его анализ с целью получения количественной информации о диэлектрической проницаемости объектов (компонентов цели) и их эквивалентной массе;

- невозможность классификации обнаруженных объектов (компонентов цели) по признаку проводник-диэлектрик.

Задачей настоящего изобретения является обеспечение возможности эффективного скрытного дистанционного досмотра движущейся цели, а также получение количественной информации о диэлектрической проницаемости и эквивалентной массе объектов (компонентов цели) и их классификация по признаку проводник-диэлектрик.

Согласно изобретению эта задача решается за счет того, что в способе дистанционного досмотра цели в контролируемой области пространства, включающем облучение этой области СВЧ-излучением с помощью двух или более элементарных излучателей, регистрацию отраженного от контролируемой области сигнала с помощью одного или более параллельных каналов регистрации, когерентную обработку зарегистрированного сигнала и отображение полученной в результате обработки информации, облучение контролируемой области и регистрацию отраженного от нее сигнала осуществляют в полосе частот, ширину которой определяют из условия:

где ΔF - ширина полосы частот,

Т - интервал времени регистрации отраженного сигнала, допускающий когерентную обработку зарегистрированного сигнала при облучении движущейся цели,

ΔT - интервал времени регистрации отраженного сигнала для получения зарегистрированного сигнала с разрешением по частоте dF при облучении цели одним элементарным излучателем, при этом

M - количество элементарных излучателей,

N - количество параллельных каналов регистрации,

L - радиальное пространственное разрешение,

с - скорость света в вакууме,

Ra - максимальный линейный размер контролируемой области в направлении передающей антенны,

Rr - максимальный линейный размер контролируемой области в направлении приемной антенны,

а отображение полученной в результате обработки информации осуществляют путем построения двух или более изображений трехмерных поверхностей, отображающих границу воздух - цель, при этом второе и последующие изображения отображают границу воздух - цель с пространственным сдвигом между ними, равным электрической длине D диэлектрических компонентов цели, при этом

где D - электрическая длина диэлектрических компонентов цели в направлении приемопередающие антенны - цель,

d - физическая длина диэлектрических компонентов цели в направлении приемопередающие антенны - цель,

ε - вещественная часть диэлектрической проницаемости вещества диэлектрических компонентов цели.

Заявителем не выявлены источники, содержащие информацию о технических решениях, идентичных настоящему изобретению, что позволяет сделать вывод о его соответствии критерию «новизна».

Благодаря реализации отличительных признаков изобретения, обеспечивается важное новое свойство объекта, а именно, корреляция ширины полосы частот, в которой осуществляют облучение контролируемой области, с радиальным пространственным разрешением изображения этой области и интервалом времени регистрации отраженного от нее сигнала, в течение которого возможна когерентная обработка зарегистрированного отраженного сигнала. В результате становится возможным эффективный скрытный досмотр не только остановившейся цели, но и движущейся; обеспечивается возможность получения количественной информации о диэлектрической проницаемости и эквивалентной массе объектов, а также их классификация по признаку проводник-диэлектрик.

Заявителем не обнаружены какие-либо источники информации, содержащие сведения о влиянии заявленных отличительных признаков на достигаемый вследствие их реализации технический результат. Это, по мнению заявителя, свидетельствует о соответствии данного технического решения критерию «изобретательский уровень».

Изобретение иллюстрируется чертежами, где изображено:

на фиг.1 - схема, поясняющая реализацию способа;

на фиг.2 - трехмерное изображение имитатора взрывчатки на теле человека, вид со стороны антенн;

на фиг.3 - то же, что на фиг.2, изображение повернуто на 90° относительно вертикальной оси;

на фиг.4 - сечение изображения на фиг.2 горизонтальной плоскостью, проходящей через центр изображения имитатора взрывчатки;

на фиг.5 - то же, что на фиг.2, имитатор взрывчатки обернут в металлическую фольгу;

на фиг.6 - то же, что на фиг.5, изображение повернуто на 180° относительно вертикальной оси;

на фиг.7 - сечение изображения на фиг.5 горизонтальной плоскостью, проходящей через центр изображения имитатора взрывчатки.

Заявленный способ реализуют следующим образом.

В контролируемой области пространства 1 находится движущая цель 2, которая должна быть подвергнута дистанционному досмотру. Для осуществления досмотра облучают область 1 СВЧ-излучением с частотой от 2 до 8 ГГц с помощью элементарных излучателей 3, представляющих в конкретном примере антенны СВЧ-передатчика. Отраженный от контролируемой области сигнал регистрируется с помощью одного или более параллельных каналов регистрации, включающих антенну 4 и приемник 5. С выхода приемника 5 информация в цифровом виде поступает в компьютер 6, где происходит его когерентная обработка. С выхода компьютера 6 информация в виде изображения поступает на монитор 7. Облучение контролируемой области 1 и регистрацию отраженного от нее сигнала осуществляют в полосе частот, ширину которой определяют из условия:

где ΔF - ширина полосы частот,

Т - интервал времени регистрации отраженного сигнала, допускающий когерентную обработку зарегистрированного сигнала при облучении движущейся цели,

ΔT - интервал времени регистрации отраженного сигнала для получения зарегистрированного сигнала с разрешением по частоте dF при облучении цели одним элементарным излучателем, при этом

,

М - количество элементарных излучателей,

N - количество параллельных каналов регистрации,

L - радиальное пространственное разрешение,

с - скорость света в вакууме,

Ra - максимальный линейный размер контролируемой области в направлении передающей антенны,

Rr - максимальный линейный размер контролируемой области в направлении приемной антенны,

отображение полученной в результате обработки информации осуществляют путем построения двух или более изображений трехмерных поверхностей, отображающих границу воздух - цель, при этом второе и последующие изображения отображают границу воздух - цель с пространственным сдвигом между ними, равным электрической длине D диэлектрических компонентов цели, при этом

где D - электрическая длина диэлектрических компонентов цели в направлении приемо-передающие антенны - цель,

d - физическая длина диэлектрических компонентов цели в направлении приемопередающие антенны - цель,

ε - вещественная часть диэлектрической проницаемости вещества диэлектрических компонентов цели; интервал времени Т определяется из неравенства:

где λmin - минимальная длина волны из диапазона частот ΔF,

- расстояние между i-тым элементарным излучателем и точкой Sk движущегося в контролируемой области объекта в момент времени t,

- расстояние между i-тым элементарным излучателем и точкой Sk движущегося в контролируемой области объекта в момент времени (t+T),

- расстояние между приемной антенной г одного или более каналов регистрации и точкой Sk движущегося в контролируемой области объекта в момент времени t,

- расстояние между приемной антенной г одного или более каналов регистрации и точкой Sk движущегося в контролируемой области объекта в момент времени (t+T).

Неравенство

задает полосу частот электромагнитного излучения, ограниченную с одной стороны зависимостью от пространственного разрешения, а с другой - возможностями аппаратной реализации способа и скоростью движущегося объекта (цели), выраженную через интервал времени Т.

Разрешение зарегистрированного сигнала по частоте задает размеры контролируемой области пространства, допускающие однозначную интерпретацию зарегистрированных данных.

Исходным при выборе параметров излучения и регистрации является пространственное радиальное разрешение L. Для получения такого разрешения необходимо облучать контролируемую область пространства и регистрировать отраженный сигнал в полосе частот ΔF. С одной стороны полоса ΔF ограничена зависимостью от L, а с другой - соотношением интервала времени регистрации отраженного сигнала и интервала времени, в течение которого фаза отраженного от произвольной точки движущегося досматриваемого объекта изменяется не более чем на π/2, что необходимо для применения когерентной обработки. Частотное разрешение зарегистрированного сигнала dF определяется необходимостью соблюдения однозначности интерпретации зарегистрированных данных при дискретной регистрации и обработке. Например, в случае досмотра человека, движущегося на расстоянии 2 м от антенн со скоростью 5 км/ч:

L=1 см,

Δf≥15 ГГц,

dF≤150 МГц - при сферической контролируемой области пространства диаметром 1 м,

Т=1.8 мс, при условии, что минимальная длина волны регистрируемого сигнала СВЧ-излучения - 1 см,

ΔТ˜0.1 мкс, определяется необходимой чувствительностью приемника и временем переключения элементов приемопередающего тракта,

ΔF≤0.27N ГГц, при количестве элементарных излучателей М=10000, что необходимо для обеспечения тангенциального разрешения ˜1 см.

Таким образом, для соблюдения двойного неравенства, ограничивающего полосу частот, необходимо использовать, по крайней мере, 56 параллельных каналов регистрации. В случае использования, например, непрерывного когерентного излучения на нескольких достаточно разнесенных частотах такие параллельные каналы регистрации могут быть реализованы путем одновременной регистрации отраженного сигнала на этих частотах.

Измерения проводились на лабораторном прототипе досмотровой установки в диапазоне частот 2-8 ГГц (ΔF=6 ГГц). Использовалось когерентное СВЧ-излучение со ступенчато изменяющейся частотой с шагом dF=125 МГц. Излучающая апертура синтезировалась путем перемещения элементарного излучателя с равномерным шагом 2 см по вертикали и горизонтали в пределах участка вертикальной плоскости 60 см·40 см. Для восстановления 3-мерного изображения использовалась цифровая фокусировка.

В качестве имитатора использовался близкий по своим диэлектрическим свойствам к пластиковой взрывчатке воск; имитатор укрепляют на теле человека. Измерения также проводились с тем же имитатором-воском, обернутым в алюминиевую фольгу, для моделирования ситуации, когда на теле человека расположен проводник тех же габаритов.

Поскольку имитатор взрывчатки, как и большинство взрывчатых веществ, является диэлектриком, то изображение досматриваемого человека в области имитатора имеет две поверхности: первая поверхность - это физическая внешняя граница воздух - имитатор, вторая - внутренняя граница имитатор - тело человека, отстоящая от внешней границы на величину электрической длины D имитатора. Из анализа фиг.2-4 можно сделать следующие выводы.

1. Объект, находящийся на теле человека, является диэлектриком.

2. Диэлектрическая проницаемость этого объекта равна 2.6 (для большинства взрывчаток значение диэлектрической проницаемости ˜3).

3. Эквивалентное количество взрывчатки (то есть степень опасности обнаруженного объекта), соответствующее данному объекту, равно 1.8 кг.

На фиг.5-7 также представлены два ракурса изображения области визуализации и сечение 3-мерного изображения имитатора взрывчатки, обернутого в металлическую фольгу. Поскольку металлическая фольга, также как и тело человека, непрозрачна для СВЧ-излучения, то на изображении наблюдается только внешняя граница воздух - имитатор. Анализ изображений на фиг.5-7 позволяет сделать следующие выводы.

1. Объект, находящийся на теле человека, является проводником.

2. Эквивалентное количество взрывчатки, соответствующее данному объекту, равно 2.2 кг.

Для реализации способа использовано известное оборудование и материалы, что обусловливает соответствие изобретения критерию «промышленная применимость».

Способ дистанционного досмотра цели в контролируемой области пространства, включающий облучение этой области СВЧ-излучением с помощью двух или более элементарных излучателей, регистрацию отраженного от контролируемой области сигнала с помощью одного или более параллельных каналов регистрации, когерентную обработку зарегистрированного сигнала и отображение полученной в результате обработки информации, отличающийся тем, что

облучение контролируемой области и регистрацию отраженного от нее сигнала осуществляют в полосе частот, ширину которой определяют из условия:

где ΔF - ширина полосы частот,

Т - интервал времени регистрации отраженного сигнала, допускающий когерентную обработку зарегистрированного сигнала при облучении движущейся цели,

ΔТ - интервал времени регистрации отраженного сигнала для получения зарегистрированного сигнала с разрешением по частоте dF при облучении цели одним элементарным излучателем, при этом

M - количество элементарных излучателей,

N - количество параллельных каналов регистрации,

L - радиальное пространственное разрешение,

с - скорость света в вакууме,

Ra - максимальный линейный размер контролируемой области в направлении передающей антенны,

Rr - максимальный линейный размер контролируемой области в направлении приемной антенны,

а отображение полученной в результате обработки информации осуществляют путем построения двух или более изображений трехмерных поверхностей, отображающих границу воздух - цель, при этом второе и последующие изображения отображают границу воздух - цель с пространственным сдвигом между ними, равным электрической длине D диэлектрических компонентов цели, при этом

где D - электрическая длина диэлектрических компонентов цели в направлении приемопередающие антенны - цель,

d - физическая длина диэлектрических компонентов цели в направлении приемопередающие антенны - цель,

ε - вещественная часть диэлектрической проницаемости вещества диэлектрических компонентов цели.



 

Похожие патенты:

Изобретение относится к метрологическому обеспечению средств магнитного каротажа и может быть использовано для градуировки и проверки приборов, предназначенных для измерения магнитной восприимчивости горных пород в скважинах.

Изобретение относится к приборостроению и может быть использовано для метрологического обеспечения геофизической аппаратуры. .

Изобретение относится к области геофизических исследований при использовании технологии сращивания бронированных каротажных кабелей. .

Изобретение относится к области электротехники. .

Изобретение относится к геофизике и может быть использовано, например, для индукционных электромагнитных зондировании верхней части разреза, в частности в сканирующих электроразведочных системах.

Изобретение относится к области гравиметрии, в частности к стендам для испытаний морской гравиметрической аппаратуры. .

Изобретение относится к приборостроению. .

Изобретение относится к области геофизических методов исследования скважин и может быть использовано для градуировки аппаратуры индукционного каротажа. .

Изобретение относится к нефтяной и газовой промышленности для геофизических исследований действующих скважин

Изобретение относится к области измерительной техники и может быть использовано в средствах регистрации колебаний грунта для определения их частотной характеристики и экспериментальной калибровки

Изобретение относится к области сейсморазведки, а именно к средствам для определения параметров сейсмоприемников

Изобретение относится к области метрологического обеспечения скважинной геофизической аппаратуры (СГА), а именно к созданию стандартных образцов для калибровки СГА нейтронного каротажа, работающей на газовых месторождениях и подземных хранилищах газа

Изобретение относится к области метрологического обеспечения скважинной геофизической аппаратуры, а именно к созданию стандартных образцов для калибровки скважинной аппаратуры нейтронного каротажа, работающей на газовых месторождениях и подземных хранилищах газа (ПХГ)

Изобретение относится к области метрологического обеспечения скважинной геофизической аппаратуры, а именно к калибровке аппаратуры по контролю технического состояния нефтяных и газовых скважин гамма-гамма методом

Изобретение относится к области нефтегазодобывающей промышленности и предназначено для обеспечения измерений плотности преимущественно буровых и тампонажных растворов, используемых в процессе строительства скважин
Наверх