Сталеплавильный флюс и способ его получения

Изобретение относится к области металлургии, в частности к сталеплавильному флюсу и способу его производства. Флюс содержит, мас. доля % на прокаленное вещество: оксид магния основа; оксид кальция 3,0-12,0; оксиды железа 5,0-15,0; оксид алюминия 0,2-2,5; диоксид кремния 2,0-5,0. Компоненты шихты, состоящей из природного магнезита, каустического магнезита и сидеритовой руды, смешивают непосредственно во вращающейся печи при следующем содержании компонентов шихты, мас. доля, %: природный магнезит 40-65; каустический магнезит 20-55; сидеритовая руда 5-15 и обжигают при температуре 1550-1700°С, обеспечивающей получение продукта скатанной формы. Обоженный материал охлаждают и классифицируют с получением готового продукта в виде фракции более 4 мм и фракцию менее 4 мм. Отсев обожженного материала фракции менее 4 мм используют в качестве основного исходного материала для изготовления способом брикетирования крупнокускового флюса. Изобретение позволит получить сталеплавильный флюс с высоким содержанием оксидов магния, высокой скоростью растворения в шлаковых расплавах основного состава и не разрушающийся в процессе транспортировки и хранения. 2 н. и 6 з.п. ф-лы, 3 табл.

 

Изобретение относится к области металлургии, в частности к флюсам сталеплавильного производства.

Известен шлакообразующий реагент, содержащий больше 15% MgO, который получают из магнезита и доломита при добавлении 5-20% портландцемента с последующим увлажнением водой в количестве 4-30% и формовании брикетов (Патент США №4451293, С 22 B 9/10, от 29.05.87 г.).

Недостатком шлакообразующего реагента является низкое содержание MgO.

Известен металлургический флюс (Заявка ФРГ №3644518, С 04 В 5/06, от 14.07.88 г.), состоящий из природного магнезита фракции 15-0 мм.

Недостатком данного флюса является медленное его растворение в основном конвертерном шлаке за счет того, что он является практически мономинеральным материалом, содержащим MgCO3, а также к недостаткам использования данного флюса можно отнести высокие энергетические затраты, связанные при его растворении за счет высоких потерь при прокаливании магнезита (до 50%).

Наиболее близким по технической сущности является флюс известково-магнезиального состава, который содержит, мас.%: 26,0-35,0 оксида магния; 0,3-7,0 оксида алюминия; 5,0-15,0 оксидов железа; 0,5-7,0 кремнезема и остальное оксид кальция (Патент РФ №2145357, С 21 С 5/36, от 02.10.2000 г.).

Недостатком вышеуказанного известково-магнезиального флюса является низкое содержание MgO, что приводит к увеличению его разовой доли, подаваемой в конвертер при необходимости повышении оксида магния в шлаке, а следовательно, и к увеличению количества образующего шлака, и соответствующего увеличения энергозатрат на растворение его в шлаке.

Наиболее близким по технической сущности к заявляемому способу является способ получения известково-магнезиального флюса, включающий смешение компонентов сырьевой шихты путем проведения совместного помола и окомкование материала способом обжига шлама во вращающейся печи. После охлаждения из обожженного материала выделяют два продукта, целевой в виде фракции крупнее 5 мм и отсевной в виде фракции менее 5 мм, который возвращается обратно в печь на повторное окомкование (Патент РФ №2141535, С 21 С 5/36, от 20.11.1999 г.).

Недостатком данного способа является низкая прочность спека, готового продукта и высокие энергозатраты, связанные с возвращением отсевного материала обратно в печь на повторное окомкование.

Задачей изобретения является создание сталеплавильного флюса, обладающего повышенным содержанием MgO, невысокой кажущейся плотностью, обеспечивающей достаточно высокую скорость растворения флюса в шлаковых расплавах основного состава. Предлагаемый способ производства позволяет производить флюс в виде окатанных гранул и брикетов необходимых размеров с высокой механической прочностью, обеспечивающей надежное хранение и транспортировку его в течение длительного времени без разрушения.

Решение поставленной задачи достигается тем, что известный сталеплавильный флюс, содержащий оксиды кальция, железа, магния, алюминия и кремнезем, согласно изобретению содержит указанные компоненты при следующем соотношении, мас., % на прокаленное вещество:

оксид магнияоснова
оксид кальция3,0-12,0
оксиды железа5,0-15,0
оксид алюминия0,2-2,5
диоксид кремния2,0-5,0

Технический результат по способу получения сталеплавильного флюса достигается тем, что смешение компонентов шихты, состоящей из природного магнезита, каустического магнезита и сидеритовой руды, производят непосредственно во вращающейся печи при следующем содержании компонентов шихты, мас. доля, %:

природный магнезит40-65
каустический магнезит20-55
сидеритовая руда5-15

Сырьевую смесь обжигают при температуре 1550-1700°С, обеспечивающей получение продукта окатанной формы. Обоженный материал охлаждают и классифицируют с получением готового продукта в виде фракции более 4 мм и отсева фракции менее 4 мм. Отсев обожженного материала фракции менее 4 мм используют в качестве основного исходного материала для изготовления способом брикетирования крупнокускового флюса. Шихта для изготовления брикетированного флюса содержит в своем составе фракцию менее 4 мм и молотую составляющую того же состава при следующем содержании компонентов шихты, мас. доля, %:

отсев обожженного материала70-90
молотая составляющая10-30
связующее, сверх 100%0,5-8

готовые брикеты термообрабатывают при температуре 160-230°С.

Дополнительно предлагается еще три варианта шихты брикетированного сталеплавильного флюса, отличающихся от начального тем, что в качестве молотой составляющей используются:

1. Каустический магнезит;

2. Молотая смесь, состоящая из каустического магнезита и агломератт железной руды в соотношении 50±5 - 50±5%;

3. Молотая смесь, состоящая из отсева обожженного материала 4-0 мм и агломерата железной руды в соотношении 60±5 - 40±5% при том же содержании компонентов в шихте.

Основными действующими веществами флюса являются оксид магния и его соединения с оксидами железа. Они хорошо взаимодействуют с компонентами сталеплавильного шлака и растворяются в нем. Оксид магния флюса взаимодействует с такими агрессивными по отношению к огнеупорной футеровке компонентами шлака, как FeO и SiO2 и связывает их в нейтральные соединения как мервинит, монтичеллит, ферриты и вюститы магния. Последние два являются огнеупорными соединениями и во взаимодействии с компонентами шлака образуют непрерывный ряд твердых растворов ферритов и вюститов сложного состава, в связи с этим происходит повышение вязкости шлака, что положительно влияет на степень пропитки шлаком футеровки. За счет общего повышения MgO в шлаке происходит снижение химического градиента по данному компоненту на границе «огнеупорная футеровка - шлак» и в конечном итоге уменьшается скорость растворения периклазсодержащей футеровки плавильной печи. Вместе с тем создание вязкого расплава шлака, содержащего до 10-12% MgO, обеспечивает хорошую адгезию его к футеровке. После слива металла подготовленный шлак наносят на футеровку конвертера посредством раздува его азотом высокого давления. На поверхности футеровки шлак кристаллизуется и образует защитный слой, стойкость данного слоя достигает двух плавок. После смыва защитного слоя операцию по подготовке и раздуву шлака повторяют.

В заявленных способах производства флюса в сравнении с прототипом используются менее затратные переделы производства:

- на переделе приготовления сырьевой смеси исключается энергозатратный передел приготовления шлама;

- возврат мелкого продукта фракции менее 4 мм обратно в печь на повторный обжиг заменяется переделом брикетирования специально приготовленной шихты,

- способ производства флюса посредством брикетирования шихты, содержащей дополнительно каустический магнезит и/или его молотую составляющую с агломератом железной руды, позволяет изготавливать флюс, отличающийся высокой скоростью растворения его в шлаковых расплавах основного состава.

Приготовление флюса указанного химического состава с кажущейся плотностью менее 3,0 г/см3 позволяет обеспечить растворение его в основных шлаковых расплавах в течение не более 10 минут.

Анализ известных в технической и патентной литературе способов получения флюсов сталеплавильного шлака не выявил применение заявленных признаков, обеспечивающих минимальные энергетические затраты окомкованного флюса, не разрушающегося в процессе транспортировки и хранения, что свидетельствует о не очевидности заявляемого изобретения.

Пример конкретного выполнения.

Природный магнезит крупностью менее 40 мм, каустический магнезит в виде уловленного пылевыноса из вращающейся печи и сидеритовую руду в соотношении, указанном в таблице 1, подают во вращающуюся печь. Сырьевые компоненты шихты, проходя через зоны подготовки и декарбонизации печи, смешиваются, и в зону обжига шихта поступает в относительно однородном состоянии. В зоне высоких температур печи за счет образования легкоплавких соединений, в основном ферритов кальция и присутствия каустического магнезита, шихта спекается с образованием окатышей с размерами до 40 мм. Обжиг сырьевой смеси проводили в диапазоне температур 1550-1700°С. Температура обжига ниже 1550°С приводит к значительному снижению выхода целевого крупнокускового продукта, а температуры выше 1700°С приводят к повышению не производительных расходов топлива.

Количество окатанного материала и его кажущаяся плотность имеют прямо пропорциональную зависимость от количества подаваемой в печь каустической пыли. Обожженный материал рассевали с получением готового продукта фракции более 4 мм и отсевного продукта фракции менее 4 мм. Выход фракции менее 4 мм в среднем составил 40%.

Утилизацию фракции менее 4 мм производили способом брикетирования полусухих масс, содержащих в исходной шихте молотую составляющую, и в качестве связки использовали сухой фенольный порошок (СФП) с растворителем - этиленгликоль в количестве 3,0% и 1,5% соответственно сверх 100%. После брикетирования брикеты термообрабатывали при температуре 160-230°С. Выбранный диапазон температур позволяет получать брикеты с максимально возможной прочностью.

Составы масс представлены в таблице 2.

Готовый флюс в виде окатышей и брикетов испытывали на прочность, сроки хранения и скорость растворения в расплавленном конвертерном шлаке при температуре 1610±10°С. Исходный конвертерный шлак, флюс и конечный шлак с присадкой к нему 10% флюса имели следующий химический состав, мас. доля в %:

MgOSiO2Fe2О3CaOFeOAl2O3MnO
Исходный шлак4,018,96,947,611,81,49,4
Флюс86,13,06,83,6-0,5-
Конечный шлак10,518,39,442,88,91,48,7

Усвоение шлаком MgO составило 85% относительно расчетного.

Результаты испытаний приведены в таблице 3.

Анализ приведенных результатов показывает, что применение заявляемых способов производства позволяет получать флюс прочный, не разрушающийся в процессе транспортировки и хранения, а также имеющий не высокую кажущуюся плотность и как следствие относительно высокую скорость растворения в сталеплавильном шлаковом расплаве.

Таблица 1
Номер шихтыСостав шихты, содержание компонентов, %Химический состав флюса, мас. доля, %Выход
MgOCaOSiO2Al2О3Fe2О3Δmпркфр. менее 4 мм, %
магнезит природныймагнезит каустическийруда сидеритовая
прототип-30,350,54,64,610,00,117,6
165201577,65,314,101,9410,90,1641,5
240501083,83,363,201,528,310,1229,8
35045587,33,382,990,955,160,3236,1
Таблица 2
Номер шихтыотсев обожженного материала 4-0 ммСодержание фракций, %Химический состав брикетированного флюса, мас. доля, %
Молотая составляющая, приготовленная из:
4-0 ммк.маг.к.маг. + агл.4-0 + агл.MgOCaOSiO2Al2О3Fe2O3Δmпрк
1a8515---83,44,233,411,487,420,1
2a90-10--84,84,053,290,766,650,81
80--20-76,53,673,932,3412,603,30
4a70---3074,83,814,212,4214,40,36

Таблица 3
Номер опытаПлотность кажущаяся. г/см3Прочность на сжатие, Н/гранулуРазрушаемость при хранении 30 суток, %Время растворения флюса, мин
прототип2,9831,516,011,4
12,8952,14,08,6
22,6553,63,69,4
32,7156,13,810,0
1a2,4151,42,89,6
2a2,3243,22,18,7
2,3841,12,68,6
4a2,4644,62,68,4

1. Сталеплавильный флюс, содержащий оксиды магния, кальция, железа, алюминия и диоксид кремния, отличающийся тем, что он содержит указанные оксиды при следующем соотношении, мас.% на прокаленное вещество:

Оксид магнияОснова
Оксид кальция3,0-12,0
Оксиды железа5,0-15,0
Оксид алюминия0,2-2,5
Диоксид кремния2,0-5,0

2. Способ получения сталеплавильного флюса, включающий смешение сырьевых компонентов шихты, обжиг шихты во вращающейся печи, выделение из обожженного материала целевого продукта в виде крупной фракции, отличающийся тем, что в качестве компонентов сырьевой шихты используют природный магнезит, каустический магнезит и сидеритовую руду, которые смешивают непосредственно во вращающейся печи, при следующем содержании компонентов, мас.%:

Природный магнезит40-65
Каустический магнезит20-55
Сидеритовая руда5-15

и обжигают ее при температуре 1550-1700°С, обеспечивающей получение продукта окатанной формы.

3. Способ по п.2, отличающийся тем, что обожженный материал охлаждают и классифицируют с получением готового продукта в виде фракции более 4 мм и отсева фракции менее 4 мм.

4. Способ по п.3, отличающийся тем, что отсев обожженного материала фракции менее 4 мм используют в качестве основного исходного материала для изготовления крупнокускового флюса способом брикетирования.

5. Способ по п.4, отличающийся тем, что шихта для изготовления брикетированного флюса содержит фракцию менее 4 мм и молотую составляющую того же состава, при следующем содержании компонентов шихты, мас.%:

Отсев обожженного материала70-90
Молотая составляющая10-30
Связующее, сверх 100%0,5-8

готовые брикеты термообрабатывают при 160-230°С.

6. Способ по п.4, отличающийся тем, что шихта для изготовления брикетированного флюса дополнительно содержит молотую составляющую в виде каустического магнезита.

7. Способ по п.4, отличающийся тем, что шихта для изготовления брикетированного флюса дополнительно содержит молотую составляющую в виде молотой смеси, состоящей из каустического магнезита и агломерата железной руды в соотношении (50±5:50±5) %.

8. Способ по п.4, отличающийся тем, что шихта для изготовления брикетированного флюса дополнительно содержит молотую составляющую в виде молотой смеси, состоящей из отсева обожженного материала и агломерата железной руды в соотношении (60±5:40±5) %.



 

Похожие патенты:
Изобретение относится к переработке цинксодержащих отходов и может быть использовано в черной и цветной металлургии. .

Изобретение относится к области подготовки сырья к плавке, в частности к способам окускования железорудного сырья. .
Изобретение относится к подготовке сырья в металлургической, строительной и других отраслях промышленности, а именно к сушке подготавливаемых к переделу мелкодисперсных материалов.
Изобретение относится к металлургии, а именно, к получению обезжелезненного малофосфористого марганцевого шлака для выплавки марганцевых ферросплавов. .
Изобретение относится к области металлургии, в частности к производству сортового проката круглого из среднеуглеродистой хромсодержащей стали повышенной обрабатываемости резанием, используемого для изготовления шаровых пальцев, наконечников тяг и шаровых опор подвески автомобиля, получаемых методом холодной объемной штамповки.
Изобретение относится к области металлургии, а именно к шихтам для получения малофосфористого марганцевого шлака, годного для выплавки марганцевых ферросплавов. .

Изобретение относится к области металлургии, точнее к производству стали в дуговых сталеплавильных электропечах. .

Изобретение относится к области металлургии, в частности к флюсам для модификации химического состава сталеплавильного шлака в сталеплавильном производстве. .

Изобретение относится к металлургии и может быть использовано для защиты металла в промежуточном ковше и в кристаллизаторе МНЛЗ при непрерывной разливке низкоуглеродистых сталей для предотвращения их науглероживания и повышения качества поверхности непрерывных слитков.

Изобретение относится к металлургии и может быть использовано при непрерывной разливке стали. .

Изобретение относится к металлургии и может быть использовано для защиты зеркала металла в промежуточном ковше и кристаллизаторе машины непрерывного литья заготовок.

Изобретение относится к металлургии и может быть использовано при получении флюса для электрошлакового переплава и электрошлаковой сварки, а также при получении синтетического шлака для десульфурации чугуна или стали.

Изобретение относится к металлургии. .
Изобретение относится к черной металлургии, в частности к флюсам для сталеплавильного производства. .

Изобретение относится к области черной металлургии и может быть использовано для подготовки проб металлургических шлаков к химическому анализу. .
Наверх