Способ получения композиционного материала для заполнения костных дефектов

Изобретение относится к области медицины и касается производства материалов, используемых в травматологии, ортопедии, челюстно-лицевой хирургии и хирургической стоматологии. Способ получения композиционного материала для заполнения костных дефектов заключается в инфильтрации в пористую керамическую матрицу из кальций фосфатной керамики с соотношением Ca/P от 1,5 до 1,67 раствора коллагена, или желатина, или поливинилового спирта концентрацией от 4 до 10% под вакуумом от 0,1 до 3,0 Па с выдержкой от 10 до 30 мин при температуре раствора от 20 до 75°C с последующей сушкой композиции в течение до 24 часов. Предлагаемый способ позволяет повысить прочность керамики в 5-6 раз, а также сокращается длительность технологического процесса. 3 табл.

 

Изобретение относится к области керамических материалов для медицины, а именно травматологии и ортопедии, челюстно-лицевой хирургии и хирургической стоматологии, и может использоваться для изготовления материалов, предназначенных для заполнения костных дефектов.

Применение кальций фосфатной керамики в качестве материала для имплантатов, несущих механические нагрузки, часто невозможно из-за недостаточных прочностных характеристик и трещиностойкости. Поскольку естественная костная ткань является композиционным материалом, состоящим из гидроксиапатита, коллагена и других белков, то значительные перспективы для повышения механических свойств кальций фосфатной керамики, предназначенной для изготовления костных имплантатов, имеет принцип формирования композиционных структур.

Известны работы (1-5), направленные на создание композитов гидроксиапатит-биополимер, которые по составу схожи с естественной костью. Композиты могут быть изготовлены посредством смешивания порошка гидроксиапатита с раствором коллагена и последующим затвердеванием смеси под УФ-излучением или прессованием смеси гидроксиапатит-коллаген при температуре 40°С и давлении 200 МПа. Однако полученные материалы имеют низкие прочностные характеристики, например прочность при растяжении равна 6,5 МПа, а модуль Юнга 2 ГПа. Прочностные свойства большинства композитов гидроксиапатит-коллаген неудовлетворительны. В то же время эти материалы имеют более высокую биоактивность, нежели гидроксиапатит и биополимер-коллаген. Используя коллаген, можно создавать материалы с контролируемой резорбируемостью. Коллаген или желатин часто используют как материал-носитель лекарственных средств пролонгированного действия (5).

Известен метод, основанный на инфильтрации водного раствора мономера ε-капролактон в пористый апатитовый цемент под высоким вакуумом с последующей его in situ полимеризацией при температуре 120 или 80°С и выдержкой 10 или 60 дней соответственно. Способ позволяет повысить прочность при растяжении пористого апатитового цемента лишь максимально в 3,7 раза. Недостатком способа является также длительность технологического процесса (6).

Технический результат предлагаемого изобретения - повышение прочности пористой спеченной керамики фосфата кальция в 5-6 раз и сокращение длительности технологического процесса упрочнения керамики.

Для достижения технического результата предлагается осуществлять инфильтрацию в пористую спеченную кальций фосфатную керамическую матрицу с соотношением Ca/P=1,5 (трехкальциевый фосфат) до 1,67 (гидроксиапатит) водных растворов коллагена, желатина и поливинилового спирта концентрацией от 4 до 10% в вакууме от 0,1 до 3,0 Па в течение 10 и 30 мин при температуре раствора от 20 до 75°C с последующей сушкой композиции при комнатной температуре 24 ч.

Пример 1. Образцы пористой керамики из гидроксиапатита (Ca/P=1,67) подвергали инфильтрации в 1, 4, 7 и 10%-ных растворах коллагена в дистиллированной воде под вакуумом при остаточном давлении 1,33 Па в течение 10 и 30 мин. Температура раствора варьировалась от 25 до 75°С. Затем полученные образцы извлекались из вакуум-сосуда, удаляли с их поверхности избыточную жидкость влажной хлопчатобумажной тканью и сушили на воздухе 20 часов при комнатной температуре.

Пример 2. Образцы пористой керамики из трехкальциевого фосфата (Ca/P=1,5) подвергали инфильтрации в 1, 4, 7 и 10%-ных растворах желатина в дистиллированной воде под вакуумом при остаточном давлении 1,33 Па в течение 10 и 30 мин. Температура раствора варьировалась от 25 до 75°С. Затем полученные образцы извлекались из вакуум-сосуда, удаляли с их поверхности избыточную жидкость влажной хлопчатобумажной тканью и сушили на воздухе 24 часа при комнатной температуре.

Пример 3. Образцы пористой керамики из гидроксиапатита (Ca/P=1,67) подвергали инфильтрации в 1, 4, 7 и 10%-ных растворах поливинилового спирта в дистиллированной воде под вакуумом при остаточном давлении 1,33 Па в течение 10 и 30 мин. Температура раствора варьировалась от 25 до 75°С. Затем полученные образцы извлекались из вакуум-сосуда, удаляли с их поверхности избыточную жидкость влажной хлопчатобумажной тканью и сушили на воздухе 24 часа при комнатной температуре.

В таблицах 1, 2 и 3 приведены свойства композиционных материалов, полученных при различных режимах процесса. Инфильтрация полимера в керамику приводит к повышению прочности до 6 раз. Эффект повышения прочности зависит от свойств полимера, а также от технологических условий эксперимента. При уровне вакуума менее 0,1 Па резко снижается пористость матрицы, а при уровне более 3,0 Па не происходит существенного упрочнения материала. При концентрации раствора биополимера менее 4% не достигается повышение прочности, а при концентрации более 10% инфильтрация полимера затруднена. При температуре раствора ниже 25°С процесс пропитки не реализуем из-за быстрого твердения раствора, а при температуре выше 75°С происходит частичное разложение биополимера. Длительность сушки 24 часа вполне достаточна для удаления воды из композиционного материала.

Таблица 1

Состав и свойства материалов
ПолимерКонцентрация раствора, %Температура раствора, °СВремя пропитки, минВакуум, ПаПредел прочности при растяжении, МПа
1 (пористая керамика)-----1,02-2,23
2Коллаген1251012,61
3Коллаген4251012,65
4Коллаген7251012,57
5Коллаген10251013,77
6Коллаген1301012,59
7Коллаген4301012,83
8Коллаген7301012,65
9Коллаген10301014,45
10Коллаген1303014,02
11Коллаген4303014,94
12Коллаген7303014,33
13Коллаген10303014,50
14Коллаген4503016,37
15Коллаген4753017,98
16Коллаген4503037,15
17Коллаген4153032,55
18Коллаген20303032,17
19Коллаген4100303-
20Коллаген450300,059,13
21Коллаген450303,52,01

Таблица 2

Состав и свойства материалов
ПолимерКонцентрация раствора, %Температура раствора, °СВремя пропитки, минВакуум, ПаПредел прочности при растяжении, МПа
1 (пористая керамика)-----1,02-2,23
2Желатин1251012,25
3Желатин4251012,75
4Желатин7251013,99
5Желатин10251015,65
6Желатин1301012,77
7Желатин4301014,08
8Желатин7301016,25
9Желатин10301017,34
10Желатин1303014,78
11Желатин4303016,21
12Желатин7303017,01
13Желатин10303017,30
14Желатин4503017,16
15Желатин4753018,35
16Желатин4503037,15
17Желатин4153039,20
18Желатин20303032,14
19Желатин4100303-
20Желатин450300,058,56
21Желатин450303,53,02

Таблица 3

Состав и свойства материалов
ПолимерКонцентрация раствора, %Температура раствора, °СВремя пропитки, минВакуум, ПаПредел прочности при растяжении, МПа
1 (пористая керамика)-----1,02-2,23
2Поливиниловый спирт1251011,33
3Поливиниловый спирт4251011,76
4Поливиниловый спирт7251012,87
5Поливиниловый спирт10251013,97
6Поливиниловый спирт1301011,41
7Поливиниловый спирт4301011,99
8Поливиниловый спирт7301012,56
9Поливиниловый спирт10301014,09
10Поливиниловый спирт1303011,92
11Поливиниловый спирт4303012,36
12Поливиниловый спирт7303014,07
13Поливиниловый спирт10303015,05
14Поливиниловый спирт4503013,69
15Поливиниловый спирт4753014,01
16Поливиниловый спирт4503034,99
17Поливиниловый спирт4153031,87
18Поливиниловый спирт20303032,56
19Поливиниловый спирт4100303-
20Поливиниловый спирт450300,057,43
21Поливиниловый спирт450303,52,45

Источники информации

1. Bakos D., Soldan M., Hemandez-Fuentes I. Hydroxyapatite-collagen-hyaluronic acid composite // Biomaterials. 1999. V.20. P.191-195.

2. Sotome S., Uemura Т., Kikuchi M., Chen J., Itoh S., Tanaka J., Tateishi Т., Shinomiya K. Synthesis and in vivo evaluation of a novel hydroxyapatite/collagen-alginate as a bone filler and a drug delivery carrier of a bone morphogenetic protein // Mater. Sci. Eng. C. 2004. V.24, N3. P.341-347.

3. Zhang L., Feng X., Liu H., Qian D., Zhang L., Yu X., Cui F. Hydroxyapatite/collagen composite materials formation in simulated body fluid environment // Mater. Lett. 2004. V.58, №5. P.719-722.

4. Kikuchi M., Matsumoto H.N., Yamada Т., Koyama Y., Takakuda K., Tanaka J. Glutaraldehyde cross-linked hydroxyapatite/collagen self-organized nanocomposites // Biomaterials. 2004. V.25, N1. P.63-69.

5. Suchanek W., Yoshimura M. Processing and properties of HA-based biomaterials for use as hard tissue replacement implants // J.Mater. Res. Soc. 1998. V.13, №1. P.94-103.

6. Walsh D., Furuzono Т., Tanaka J. Preparation of porous composite implant materials by in situ polymerization of porous apatite containing ε-caprolactone or methylmethacrylate. Biomaterials. 2001. V.22, N11. P.1205-1212.

Способ получения композиционного материала для заполнения костных дефектов, заключающийся в инфильтрации в пористую керамическую матрицу из кальций фосфатной керамики с соотношением Ca:P от 1,5 до 1,67 раствора коллагена или желатина или поливинилового спирта концентрацией от 4 до 10% под вакуумом от 0,1 до 3,0 Па с выдержкой от 10 до 30 мин при температуре раствора от 20 до 75°C с последующей сушкой композиции в течение до 24 ч.



 

Похожие патенты:
Изобретение относится к области медицины, а именно к ортопедии и травматологии. .

Изобретение относится к медицине и медицинской технике, к челюстно-лицевой, черепно-мозговой или эстетической хирургии, стоматологии, онкостоматологии, травматологии.

Изобретение относится к медицине, а именно к хирургическому лечению переломов и дефектов костной ткани. .

Изобретение относится к медицине, а именно к артрологии, и может быть использовано для лечения дегенеративно-дистрофических и посттравматических деформирующих артрозов и иных деформирующих повреждений суставов.

Изобретение относится к области биологического материаловедения разделов медицины: хирургия, травматология, ортопедия и может быть использовано при реконструкционно-хирургических вмешательствах на разных отделках скелета, в т.

Изобретение относится к медицинской промышленности, в частности к технологии изготовления глазных протезов из стекла, предназначенных для протезирования лиц, лишенных одного или обоих глаз, а также при наличии атрофированного глазного яблока или глаза с бельмом, в лечебно-косметических целях.
Изобретение относится к области медицинской техники

Изобретение относится к медицинской технике
Изобретение относится к медицине, а именно к композиции для биоактивного микропористого материала, содержащей размельченное в порошок медицинское стекло, порошок гидроксиапатита и карбонатный порообразователь, в которую вводят цеолит для формирования микропоровой структуры и повышения прочности стеклокерамических материалов и изделий

Изобретение относится к медицине и представляет собой биотрансплантат на основе высокопористого керамического материала системы оксид циркония - оксид алюминия и мультипотентных стромальных клеток костного мозга человека для восстановления протяженных дефектов костной ткани, характеризующийся тем, что содержит аутологичные или донорские мультипотентные мезенхимальные стромальные клетки (ММСК) из костного мозга и носитель, созданный на основе высокопористого керамического материала системы оксид циркония - оксид алюминия по технологии дублирования пенополиуретановой основы, при этом носитель плотно засевают ММСК, культивированными от 1 до 3-х пассажей, при этом на одном носителе иммобилизовано от 200 до 500 тысяч клеток, витальность которых составляет не менее 90%, а функциональная направленность подтверждается способностью к направленной дифференцировке в мезодермальные линии и демонстрируется экспрессия стромальных маркеров CD90 и CD 105 у 60-90% клеток и отсутствие экспрессии маркера CD34

Изобретение относится к области материалов для костных имплантантов и может быть использовано для изготовления биокерамики для лечения костных дефектов
Изобретение относится к биоактивному микропористому материалу для костной хирургии, который включает при определенных соотношениях измельченное в порошок высокощелочное стекло островной, цепочечной, кольцевой и слоистой структуры определенного состава, порошок кальций-фосфатного наполнителя, выбранного из кальций-дефицитного гидроксиапатита с отношением Са/Р=1,5-1,65 или -трехкальциевого фосфата, и порообразователь, представляющий собой крахмал или желатин
Изобретение относится к способу получения пористого биоактивного стеклокристаллического материала

Изобретение относится к медицине, а более конкретно к офтальмологии, и используется для протезирования кадаверной полости глазницы после энуклеации глазного яблока при использовании его с целью кератопластики
Наверх