Способ термической обработки прокатных валков


C21D1/09 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)

Владельцы патента RU 2298043:

Открытое акционерное общество "Западно-сибирский металлургический комбинат" ОАО "ЗСМК" (RU)

Изобретение относится к термической обработке, а именно к технологическим процессам поверхностного упрочнения прокатных валков. Способ включает обработку поверхности прокатного валка плазменной струей с использованием в качестве плазмообразующего газа - аргона с расходом 1,1-1,6 м3/ч, с плотностью мощности (85-125)·106 Вт/м2, со скоростью перемещения 35-53 мм/с, а в качестве защитного газа используется азот с расходом 3,5-3,8 м3/ч. Использование предлагаемого способа позволяет путем плазменной закалки поверхностного слоя прокатных валков повысить их стойкость в 1,5-2 раза, получить упрочненный поверхностный слой с высокой твердостью, оптимальной структурой и толщиной. 1 табл.

 

Изобретение относится к термической обработке, а именно к технологическим процессам поверхностного упрочнения железоуглеродистых сплавов высокоэнергетическими плазменными потоками, и может быть использовано при обработке прокатных валков.

Известен способ термической обработки прокатных валков преимущественно с отношением длины к диаметру 6-10, включающий непрерывно-последовательную закалку поверхности валка от центральной части к периферии высококонцентрированным источником энергии (SU №1731831, C21D 1/06, опубл. 07.05.92, бюл. №17).

Недостатком этого способа является ограничение его применения по типоразмеру валков и технологическому режиму обработки, который приводит к значительному оплавлению обрабатываемой поверхности.

Известен способ поверхностной закалки прокатных валков преимущественно из хромистой стали, включающий обработку сфокусированным лазерным лучом с заданной плотностью мощности при вращении и продольном перемещении валка с заданными скоростями. Обработку ведут при плотности мощности лазерного луча (1,7-6,0)·106 кВт/м2, скорости вращения валка (67-167) об/с и скорости продольного его перемещения (0,5-25)·10-3 м/с в условиях принудительного охлаждения (SU №1352962, C21D 1/06, опубл. 07.05.92, бюл. №17).

Недостатком данного способа является технологическая невозможность достижения упрочненного слоя требуемой толщины с однородной аустенитно-мартенситной структурой без оплавления.

Наиболее близким к предлагаемому способу термической обработки является способ упрочнения деталей, включающий обработку поверхности изделия азотной плазменной струей с мощностью 10.5-12 кВт, расходом азота 15-17 л/мин и скоростью перемещения плазменной струи над изделием 0,5-1,1 мм/с. (SU №1766970, C21D 1/06, опубл. 07.10.92, бюл. №37).

Недостатком данного способа является низкая эксплуатационная стойкость прокатных валков, обработанных данным способом, по причине получения неравномерных качественных характеристик и свойств закаленного слоя.

Задачей изобретения является повышение эксплуатационной стойкости прокатных валков путем получения упрочненного поверхностного слоя прокатных валков с высокой твердостью, оптимальной структурой и толщиной.

Поставленная задача достигается тем, что в известном способе, включающем обработку поверхности изделия плазменной струей с заданными расходом плазмообразующего газа, плотностью мощности и скоростью перемещения плазменной струи над изделием, согласно изобретению, в качестве плазмообразующего газа используют аргон с расходом 1,1-1,6 м3/ч, с плотностью мощности (85-125)·106 Вт/м2, со скоростью перемещения 35-53 мм/с, а в качестве защитного газа используют азот с расходом 3,5-3,8 м3/ч.

Техническим результатом предлагаемого изобретения является повышение эксплутационной стойкости прокатных валков, получение упрочненного поверхностного слоя с высокой твердостью, оптимальной структурой и толщиной.

Достижение указанного технического результата обеспечивается тем, что в качестве плазмообразующего газа используют аргон с расходом 1,1-1,6 м3/ч, с плотностью мощности (85-125)·106 Вт/м2, со скоростью перемещения 35-53 мм/с, а в качестве защитного газа используют азот с расходом 3,5-3,8 м3/ч.

Использование аргона в качестве плазмообразующего газа обеспечивает повышенную температуру плазменной струи 13000-15000°С. Упрочнение прокатного валка с расходом аргона 1,1-1,6 м3/ч позволяет получить стабильную, максимально ионизированную плазменную дугу, что положительно влияет на производительность процесса.

Выбор диапазона плотности мощности плазменной струи (85-125)·106 Вт/м2 и скорости ее перемещения 35-53 мм/с позволяет получать упрочненный слой с минимальной зоной оплавления и достижением технологической толщины зоны термического влияния, ограниченной допустимым износом прокатных валков, что способствует снижению затрат на съем невыработанного закаленного металла при последующих ремонтах валков.

Использование азота в качестве защитного газа с расходом 3,5-3,8 м3/ч при электродуговой плазменной обработке предотвращает окисление оплавленного пятна на обрабатываемой поверхности.

Выбор значений расхода аргона менее 1,1 м3/ч не обеспечивает равномерного распределения плотности теплового потока по площади зоны обработки. Превышение расхода аргона более 1,6 м3/ч приводит к "подстуживанию" плазменной струи и повышению ее газодинамического давления на оплавленную зону обработки.

Выбор значений плотности мощности плазменной струи более 125·106 Вт/м2 и скорости ее перемещения менее 35 мм/с приводит к повышенному оплавлению упрочняемой поверхности, которое сопровождается катастрофическим трещинообразованием. Увеличение тепловложения путем реализации указанных технологических параметров приводит к растворению графита в зоне термического влияния, вблизи зоны оплавления, формируя при этом светлую прослойку с пониженной микротвердостью 5300...6900 МПа, состоящую из мартенсита и остаточного аустенита.

Упрочнение прокатных валков плазменной аргоновой струей с плотностью мощности менее 85·106 Вт/м2 и скоростью перемещения более 53 мм/с не позволяет получать необходимую технологическую толщину упрочненного слоя, вследствие чего такие прокатные валки имеют незначительное повышение стойкости.

При выборе значений расхода азота менее 3,5 м3/ч не обеспечивается эффективная защита оплавленной зоны обработки от окисления для заявленного диапазона скорости обработки. Расход азота более 3,8 м3/ч приводит к необоснованному расходу газа.

Реализация предлагаемого способа термоупрочнения прокатных валков осуществлялась следующим образом.

Пример (таблица, вариант 4). Прокатные (горизонтальные) валки универсальных клетей чистовой группы стана "450" из чугуна с шаровидным графитом марки СШХНФ после прокатки балочного профиля перетачивались с удалением дефектов отработанной поверхности под планируемый номер балки.

После ремонта валок устанавливали в манипулятор установки плазменной закалки УПН-303, оборудованной плазмотроном прямого действия типа СМ и выпрямителем БС-315. В качестве плазмообразующего газа использовали аргон. Для защиты от окисления оплавляемого пятна от воздействия плазменной струи применяли азот. Включением манипулятора задавали вращательное движение валка, что обеспечивало перемещение плазменной струи с шагом смещения 0,5 диаметра сопла относительно обрабатываемой поверхности валка. На установке проводили упрочнение рабочей торцевой поверхности бочки прокатного валка, подвергающейся при прокатке балочных профилей максимальным термическим и механическим нагрузкам по следующим режимам:

Рабочий ток, А110
Напряжение на дуге, В32
Скорость обработки, мм/с45
Расход аргона, м31,3
Расход азота, м33,6
Диаметр сопла, мм6,0

В таблице приведены данные по стойкости горизонтальных прокатных валков, упрочненных в диапазоне оптимальных значений скорости обработки и плотности мощности плазменного потока. Выбранный оптимальный диапазон параметров режима плазменного поверхностного упрочнения прокатного валка позволил получить необходимую технологическую глубину упрочненного слоя со структурой мартенсита и остаточного аустенита и микротвердостью 7400...8600 МПа, плавно переходящей к значениям микротвердости перлита основы 3500...3900 МПа. Это благоприятно сказывается на эксплуатационных свойствах прокатных валков, упрочненная поверхность которых после отработки характеризуется отсутствием трещин, выкрошиваний и пониженной окисляемостью.

Использование предлагаемого способа позволяет путем плазменного упрочнения прокатных валков повысить их стойкость в 1,3-2 раза по сравнению с нормативной стойкостью, получить упрочненный поверхностный слой с высокой твердостью, оптимальной структурой и толщиной.

Способ термической обработки прокатных валков, включающий обработку поверхности изделия плазменной струей с заданными расходом плазмообразующего газа, плотностью мощности и скоростью перемещения плазменной струи над изделием, отличающийся тем, что в качестве плазмообразующего газа используют аргон с расходом 1,1-1,6 м3/ч, с плотностью мощности (85-125)·106 Вт/м2 и скоростью перемещения струи 35-53 мм/с, а в качестве защитного газа используют азот с расходом 3,5-3,8 м3/ч.



 

Похожие патенты:
Изобретение относится к области термической обработки и может быть использовано при изготовлении бандажей составных роликов машины непрерывного литья заготовок. .

Изобретение относится к области черной металлургии, а именно к термообработке кованых валков из заэвтектоидной стали для станов горячей прокатки. .

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано для упрочения рабочих калибров стальных валков сортопрокатного стана.

Изобретение относится к металлургии и может быть использовано при производстве валков профилегибочных и трубоформовочных станов. .
Изобретение относится к черной металлургии, в частности к технологии производства валков сортовых станов горячей прокатки. .

Изобретение относится к области термической обработки и может быть использовано для термического упрочнения литых трубоформовочных и профилегибочных валков (роликов) из заэвтектоидной хромистой стали.
Изобретение относится к металлургии и машиностроению и может быть использовано при окончательной термической обработке прокатных валков листовых станов. .

Изобретение относится к прокатному производству и может быть использовано при восстановлении прокатных валков станов холодной и горячей прокатки. .
Изобретение относится к металлургии и может быть использовано на станах горячей и холодной прокатки для повышения долговечности прокатных валков. .

Изобретение относится к области тепловой обработки металлов. .

Изобретение относится к области трубопрокатного производства при осуществлении регулируемого охлаждения зоны сварного соединения (ЗСС) бурильных труб в поточных линиях при их термической обработке.

Изобретение относится к области поверхностного упрочнения изделий и может быть использовано при изготовлении широкой номенклатуры деталей и инструмента. .
Изобретение относится к области машиностроения, в частности к термической обработке инструмента. .
Изобретение относится к области металлургии, конкретнее к термической обработке фабрикатов, в частности горячекатаных листов из хромистой стали с повышенными баллистико-ударными характеристиками.

Изобретение относится к термообработке черных или цветных металлов и может быть использовано при производстве холоднокатаной полосовой стали для штамповки деталей сложной конфигурации.

Изобретение относится к термообработке черных или цветных металлов и может быть использовано при производстве холоднокатаной полосовой стали для штамповки деталей сложной конфигурации.

Изобретение относится к сокатализаторам для термообработки атмосферы и способам их использования и введения. .

Изобретение относится к прокатному производству, в частности к охлаждению рулонов горячекатаных полос. .
Изобретение относится к машиностроению, в частности, к способам повышения надежности и долговечности рабочих органов погружного оборудования установок электрических центробежных насосов (УЭЦН), используемых в нефтедобывающей промышленности
Наверх