Способ термической обработки труб

Изобретение относится к области термообработки полых изделий, в частности труб, работающих в агрессивных средах нефтяных месторождений. Техническим результатом изобретения является повышение качества и надежности труб за счет улучшения их коррозионно-механических показателей. Сущность изобретения заключается в том, что осуществляют нагрев трубы путем пропускания тока высокой плотности и охлаждение ее поверхностей охлаждающим агентом, при этом используют ток плотностью до 15 А/мм2, нагрев ведут до температуры, не превышающей Ac1, после чего делают выдержку при этой температуре в течение не более 20 минут, а затем осуществляют охлаждение со скоростью 75-100°С/сек. Для создания регламентированных остаточных напряжений сжатия на внешней поверхности трубы осуществляют охлаждение внутренней поверхности. Для создания таких напряжений на внутренней поверхности охлаждение ведут со стороны внешней поверхности. Предлагаемые режимы термообработки позволяют достичь необходимых температурных перепадов и соответствующих пластических деформаций в микрообластях по толщине стенок трубы. 2 з.п.ф-лы, 1 табл.

 

Изобретение относится к области термообработки полых изделий, в частности труб, работающих в агрессивных средах нефтяных месторождений.

Одной из наиболее распространенных причин разрушения стальных конструкций является наличие в них неконтролируемых остаточных напряжений. Существующая технология производства бесшовных труб приводит к возникновению на их поверхностях остаточных растягивающих напряжений, которые, суммируясь с напряжениями от внешних нагрузок, ускоряют коррозионные процессы и вызывают разрушение труб при напряжениях значительно ниже расчетных. В то же время известно, что формирование на поверхностях труб остаточных сжимающих напряжений позволяет значительно повысить стойкость труб против коррозионно-механического разрушения.

Известен способ термической обработки деталей со сквозным отверстием, в соответствии с которым для создания сжимающих остаточных напряжений как на внутренней, так и на внешней поверхности деталей осуществляют закалку, высокий отпуск и охлаждение с температуры отпуска всей детали на воздухе до достижения на внешней поверхности температуры 550-250°С, а затем внутреннюю поверхность охлаждают водой (авторское свидетельство СССР №1210463, МПК C21D 9/08). Данный способ предназначен для обработки крупногабаритных деталей с толщиной стенки более 100 мм, требует больших энергозатрат и имеет ограниченные возможности снижения уровня остаточных напряжений и обеспечения их распределения по поверхности и толщине стенки.

Наиболее близким к заявляемому изобретению по совокупности существенных признаков является способ термической обработки труб, описанный в патенте РФ №2229524, МПК C21D 9/08, согласно которому для формирования на поверхностях трубы остаточных сжимающих напряжений ее нагревают путем пропускания тока высокой плотности с одновременным охлаждением наружной и внутренней поверхностей охлаждающим агентом. Однако низкий уровень сформированных на поверхностях остаточных сжимающих напряжений, а также невозможность регулирования физико-механических характеристик обрабатываемых труб не позволяют обеспечить их требуемые коррозионно-механические свойства.

Задачей, на решение которой направлено заявляемое изобретение, является повышение качества и надежности труб, предназначенных для работы в средах нефтяных месторождений, за счет улучшения их коррозионно-механических показателей.

Для решения поставленной задачи предлагается способ термической обработки труб, согласно которому осуществляют нагрев трубы путем пропускания тока высокой плотности и охлаждение ее поверхностей охлаждающим агентом, но в отличие от прототипа используют ток плотностью до 15 А/мм2, нагрев ведут до температуры, не превышающей Ac1, после чего делают выдержку при этой температуре в течение не более 20 мин, а затем осуществляют охлаждение со скоростью 75-100°С/сек. Для создания регламентированных остаточных напряжений сжатия на внешней поверхности трубы осуществляют охлаждение внутренней поверхности. Для создания таких напряжений на внутренней поверхности охлаждение ведут со стороны внешней поверхности.

Технический результат, обеспечиваемый заявляемым изобретением, заключается в том, что предлагаемые режимы термообработки позволяют достичь необходимых температурных перепадов и соответствующих пластических деформаций в микрообластях по толщине стенок трубы. При этом происходит одновременная оптимизация остаточных напряжений тангенциального и продольного направления, повышается однородность картины распределения остаточных напряжений по поверхности и толщине стенок, на поверхности труб ликвидируются остаточные растягивающие напряжения и заменяются остаточными сжимающими напряжениями. Проведенные экспериментальные исследования подтвердили, что предлагаемый способ позволяет получить на наружной и внутренней поверхностях на глубине 0,3-1,0 мм сжимающие напряжения от 50 до 390 МПа. Благодаря всему вышеуказанному снижается неравномерность скоростей коррозионно-механического разрушения и значительно повышается предел длительной коррозионной прочности трубной продукции.

При этом, поскольку максимальная температура нагрева не превышает температуру предшествующего отпуска, то обеспечивается сохранение основных механических свойств. Увеличение плотности тока свыше 15 А/мм2 нецелесообразно с точки зрения энергозатрат при термообработке труб нефтяного сортамента, имеющих фиксированные длину и площадь сечения. Увеличение времени выдержки свыше 20 минут не приводит к существенному возрастанию сжимающих напряжений, но увеличивает энергозатраты. При осуществлении охлаждения со скоростью менее 75°С/сек уровень остаточных напряжений изменяется недостаточно и не дает существенного улучшения эксплуатационных свойств труб. Увеличение скорости охлаждения выше 100°С/сек не приводит к значительному увеличению уровня остаточных сжимающих напряжений, но может привести к короблению и разрушению труб.

Предлагаемый способ может быть проиллюстрирован следующим примером. Насосно-компрессорную трубу (ГОСТ 633-80) диаметром 73 мм, толщиной стенки 5,5 мм, длиной 10000 мм из стали марки 23Г2А нагревали путем пропускания электрического тока плотностью 15 А/мм2. Нагрев трубы контролировали пирометром. Охлаждение водой осуществляли через перфорированную штангу, вставленную внутрь трубы по всей длине. Контроль остаточных напряжений проводили с помощью ИВК «Ситон», который позволяет электроконтактным неразрушающим методом осуществлять измерение остаточных напряжений в поверхностном слое изделий из токопроводящих металлов и сплавов. Результаты проведенных экспериментов представлены в таблице. При этом, поскольку максимальная температура нагрева не превышала температуру предшествующего отпуска, обеспечивалось сохранение основных механических характеристик изделий: δ до обработки составляло 13,51%, после обработки - 14,1%; σ0,2 до обработки - 726 МПа, после обработки - 732 МПа; σВ до обработки - 828 МПа, после обработки - 835 МПа. Полученные результаты (табл.) также подтверждают, что охлаждение со скоростью ниже 75°C/сек (варианты 1, 2) снижает уровень остаточных напряжений, однако величина изменения напряжений недостаточна для существенного изменения эксплуатационных свойств труб. Увеличение скорости охлаждения внутренней поверхности до 75-100°С/сек позволило получить снижение напряжений на внешней поверхности на 150-200 МПа без существенного изменения напряжений на внутренней поверхности. Таким образом, при использовании предложенных режимов термообработки труб возникают возможности управления остаточными напряжениями на одной из поверхностей трубы и создания необходимого уровня остаточных сжимающих напряжений и их оптимального распределения по сечению трубы, отвечающих условиям ее эксплуатации.

Температура нагрева, °СВремя выдержки, минСкорость охлаждения, °С/секОстаточные напряжения, МПа
Наружная поверхностьВнутренняя поверхность
До обработкиПосле обработкиДо обработкиПосле обработки
1500510 (воздух с наруж. поверх.)- 180- 235175230
2600510 (воздух с наруж. поверх.)- 170- 25016018
3550-600575 (вода внутрь)- 170- 2806550
4550-600575 (вода внутрь)- 170- 3206595
5550-6005100 (вода внутрь)- 170- 37065120
6550-6005100 (вода внутрь)- 170- 32065240
7600785 (вода)- 60- 365
86002085 (вода)- 60- 395

1. Способ термической обработки труб, включающий нагрев трубы путем пропускания тока высокой плотности и охлаждение поверхностей охлаждающим агентом, отличающийся тем, что трубу нагревают током плотностью до 15 А/мм2 до температуры, не превышающей Ac1, выдерживают при этой температуре не более 20 мин, а затем осуществляют охлаждение со скоростью 75-100°С/с.

2. Способ по п.1, отличающийся тем, что осуществляют охлаждение внутренней поверхности трубы.

3. Способ по п.1, отличающийся тем, что осуществляют охлаждение наружной поверхности трубы.



 

Похожие патенты:

Изобретение относится к трубопрокатному производству, а именно к способу производства передельной трубной заготовки для прокатки холоднокатаных труб большого и среднего диаметров с повышенной точностью по стенке из сплавов на основе титана, и может быть использовано на станах продольной сварки, а как передельная трубная заготовка - на станах ХПТ 250 и ХПТ 450.
Изобретение относится к трубному производству, в частности к производству сварных прямошовных труб большого диаметра, и может быть использовано при производстве труб данного сортамента с последующей раскаткой сварного шва до уровня основного металла и термомеханической обработкой.

Изобретение относится к области термообработки, в частности для термоупрочнения труб с отдельного нагрева в линиях термоотделов или для термомеханической обработки труб с использованием тепла прокатного нагрева.

Изобретение относится к области трубопрокатного производства для термоупрочнения труб в линиях термоотделов и станов горячей прокатки. .

Изобретение относится к трубному производству, в частности для производства бурильных труб с приваренными соединительными замками. .

Изобретение относится к обработке металлов давлением, в частности к изготовлению тонкостенных цилиндрических изделий. .

Изобретение относится к технологии изготовления сильфонов, в частности к устройствам для правки геометрических размеров и формы сильфонов, применяемой при термической обработке.

Изобретение относится к металлургии, в частности к способам и устройствам для термообработки сварных кольцевых швов крупногабаритных толстостенных полых изделий в процессе изготовления, монтажа или ремонта.
Изобретение относится к области термомеханической обработки трубных металлических изделий. .

Изобретение относится к устройствам для термообработки пустотелых цилиндрических деталей с гофром вовнутрь, обеспечивающих высокую точность внутреннего диаметра сильфона при минимальных затратах.

Изобретение относится к области объемного упрочнения металлических изделий методами тренирующих механических воздействий

Изобретение относится к области металлургии, в частности трубе и способу ее изготовления

Изобретение относится к области трубопрокатного производства и может быть использовано при изготовлении оправок станов продольной прокатки труб
Изобретение относится к трубопрокатному производству

Изобретение относится к технологии изготовления сильфонов, в частности к устройствам для термоправки геометрических размеров и формы сильфонов

Изобретение относится к восстановлению технологических трубопроводов и может быть использовано в химической, нефтехимической, нефтегазодобывающей и других отраслях промышленности для восстановления структуры и служебных свойств технологических трубопроводов из аустенитных сталей
Изобретение относится к области нефтедобычи, в частности к обсадным и насосно-компрессорным трубам, предназначенным для эксплуатации в агрессивных средах, содержащих сероводород и углекислый газ

Изобретение относится к области изготовления бесшовных труб
Изобретение относится к области металлургии и нефтяного машиностроения и может быть использовано для изготовления насосно-компрессорных и бурильных труб из легированных углеродистых сталей
Наверх