Инфракрасный объектив с плавно изменяющимся фокусным расстоянием

Объектив содержит последовательно расположенные неподвижный первый компонент в виде положительной выпукло-вогнутой линзы, подвижный второй компонент в виде отрицательной двояковогнутой линзы, подвижный третий компонент в виде отрицательной вогнуто-выпуклой линзы, неподвижные четвертый компонент в виде положительной вогнуто-выпуклой линзы и пятый компонент, состоящий из первой положительной выпукло-вогнутой, второй отрицательной выпукло-вогнутой, третьей отрицательной линз, четвертой линзы и пятой положительной линзы, в пятом компоненте третья линза выполнена двояковогнутой, четвертая - отрицательной выпукло-вогнутой, а пятая - двояковыпуклой, при этом первые поверхности третьей и пятой линз пятого компонента выполнены асферическими. Технический результат - уменьшение длины инфракрасного объектива относительно его максимального фокусного расстояния при сохранении отношения максимального фокусного расстояния к минимальному, а также повышение концентрации энергии в заданном кружке рассеяния. 3 з.п. ф-лы, 1 ил., 3 табл.

 

Изобретение относится к ИК оптическим системам и может быть использовано в тепловизорах.

Известен инфракрасный объектив с плавно изменяющимся фокусным расстоянием (см. патент Великобритании №1532096), содержащий последовательно расположенные первый неподвижный компонент, состоящий из одной линзы, подвижный второй компонент, состоящий из одной линзы, подвижный третий компонент, состоящий из одной линзы и неподвижный четвертый компонент, состоящий из двух линз.

Недостатком такого инфракрасного объектива является малый интервал изменения фокусного расстояния (отношение максимального фокусного расстояния к минимальному М=3,5), большие габариты (длина объектива превышает максимальное фокусное расстояние в 1,3 раза), а также достаточно большой кружок аберрационного рассеяния от точечного источника излучения, приводящий к размытию изображения и плохому его качеству.

Часть из указанных недостатков устранена в наиболее близком по технической сущности инфракрасном объективе с плавно изменяющимся фокусным расстоянием (см. патент США №6091551, М. кл. G02B 15/14; G02B 13/14, публ. 18.07.2000 г., схема на фиг.21), содержащем последовательно расположенные неподвижный компонент I с фокусным расстоянием f1, состоящий из положительной выпукло-вогнутой линзы из кремния, подвижный компонент II с фокусным расстоянием f2, состоящий из отрицательной двояковогнутой линзы из кремния, подвижный компонент III с фокусным расстоянием f3, состоящий из отрицательной вогнуто-выпуклой линзы из германия, далее неподвижные компонент IV с фокусным расстоянием f4, состоящий из положительной вогнуто-выпуклой линзы из кремния и компонент V с фокусным расстоянием f5, состоящий из первой положительной выпукло-вогнутой линзы из кремния, второй отрицательной выпукло-вогнутой линзы из германия, третьей отрицательной вогнуто-выпуклой линзы из кремния, четвертой положительной вогнуто-выпуклой линзы из кремния и пятой положительной выпукло-вогнутой линзы из кремния.

Отношение максимального фокусного расстояния к минимальному в этом инфракрасном объективе достигает М=4. Качество изображения обеспечивается соотношениями фокусных расстояний компонентов с максимальным фокусным расстоянием объектива ft: 1.00<f1/ft, -0.40>f2/ft и 0.35<f5/ft<0.70 (см. также Шпякин М.Г. "Исследование и расчет объективов с широкими интервалами изменения фокусного расстояния", автореферат диссертации на соискание ученой степени кандидата технических наук, Л., 1971 г., с.13), где приведен ряд уравнений, связывающих оптические силы компонентов, анализируя которые можно получить требуемые соотношения фокусных расстояний: f1/ft>1, f2/ft<0 и т.д. Фокусное расстояние объектива, приведенного на фиг.21 патента США №6091551, изменяется в пределах от 50 до 200 мм. При масштабировании конструктивных параметров, например, для получения переменного фокусного расстояния от 75 до 300 мм длина объектива становится не приемлемой для его использования в тепловизионной аппаратуре (длина объектива превышает максимальное фокусное расстояние в 1,87 раз), а аберрационные характеристики его ухудшаются пропорционально масштабу.

Таким образом, недостатком описанного инфракрасного объектива являются большие габариты при недостаточном качестве изображения.

Задачей, на решение которой направлено изобретение, является уменьшение длины инфракрасного объектива относительно его максимального фокусного расстояния при сохранении отношения максимального фокусного расстояния к минимальному, а также повышение концентрации энергии в заданном кружке рассеяния.

Указанная цель достигается тем, что в инфракрасном объективе с плавно изменяющимся фокусным расстоянием, содержащем последовательно расположенные неподвижный первый компонент в виде положительной выпукло-вогнутой линзы, подвижный второй компонент в виде отрицательной двояковогнутой линзы, подвижный третий компонент в виде отрицательной вогнуто-выпуклой линзы, неподвижные четвертый компонент в виде положительной вогнуто-выпуклой линзы и пятый компонент, состоящий из первой положительной выпукло-вогнутой, второй отрицательной выпукло-вогнутой, третьей отрицательной линз, четвертой линзы и пятой положительной линзы, отличающийся тем, что в пятом компоненте третья линза выполнена двояковогнутой, четвертая - отрицательной выпукло-вогнутой, а пятая - двояковыпуклой,

Также тем, что первые поверхности третьей и пятой линз пятого компонента выполнены асферическими.

Асферическая поверхность третьей линзы пятого компонента выполнена в соответствии с уравнением

у2+z2=-2rx+(0,165627...0,165632)rx2,

где у - ось системы координат, лежащей в плоскости меридионального сечения объектива;

z - ось системы координат, лежащей в плоскости сагиттального сечения объектива;

х - ось системы координат, совпадающей с оптической осью объектива;

r - радиус кривизны начальной сферы упомянутой поверхности третьей линзы пятого компонента.

Асферическая поверхность пятой линзы пятого компонента выполнена в соответствии с уравнением

у2+z2=2rx+0,1853rx2,

где у - ось системы координат, лежащей в плоскости меридионального сечения объектива;

z - ось системы координат, лежащей в плоскости сагиттального сечения объектива;

х - ось системы координат, совпадающей с оптической осью объектива;

r - радиус кривизны начальной сферы упомянутой поверхности пятой линзы пятого компонента.

На чертеже представлена оптическая схема инфракрасного объектива с плавно изменяющимся фокусным расстоянием с расположением компонентов для фокусного расстояния 300 мм.

Объектив содержит последовательно расположенные вдоль оптической оси неподвижный первый компонент I в виде положительной выпукло-вогнутой линзы 1, подвижный второй компонент II в виде отрицательной двояковогнутой линзы 2, подвижный третий компонент III в виде отрицательной вогнуто-выпуклой линзы 3, неподвижный четвертый компонент IV в виде положительной вогнуто-выпуклой линзы 4 и неподвижный пятый компонент V, состоящий из первой положительной выпукло-вогнутой линзы 5, второй отрицательной выпукло-вогнутой линзы 6, третьей отрицательной двояковогнутой линзы 7, четвертой отрицательной выпукло-вогнутой линзы 8 и пятой положительной двояковыпуклой линзы 9. Первые поверхности третьей 7 и пятой 9 линз пятого компонента V выполнены асферическими.

Асферическая поверхность третьей линзы 7 пятого компонента V может быть выполнена в соответствии с уравнением

у2+z2=-2rx+(0,165627...0,165632)rx2,

где у - ось системы координат, лежащей в плоскости меридионального сечения объектива;

z - ось системы координат, лежащей в плоскости сагиттального сечения объектива;

х - ось системы координат, совпадающей с оптической осью объектива;

r - радиус кривизны начальной сферы упомянутой поверхности третьей линзы 7 пятого компонента.

Асферическая поверхность пятой линзы 9 пятого компонента V может быть выполнена в соответствии с уравнением

у2+z2=2rx+0,1853rx2,

где у - ось системы координат, лежащей в плоскости меридионального сечения объектива;

z - ось системы координат, лежащей в плоскости сагиттального сечения объектива;

х - ось системы координат, совпадающей с оптической осью объектива;

r - радиус кривизны начальной сферы упомянутой поверхности пятой линзы 9 пятого компонента.

Конструктивные параметры заявляемого инфракрасного объектива с плавно изменяющимся фокусным расстоянием от 75 до 300 мм для области спектра 3,0-5,0 мкм представлены в табл. 1.

Таблица 1
Компонент №Линза №Значение радиуса сферической поверхности, ммТолщины по оси, ммМатериал
I1r1=410,2

r2=889,2
D1=12Кремний
d2=9
II2r3=-8318,0

r4=370,7
d3=6Кремний
d4=109,3
III3r5=-212,3

r6=-381,9
d5=6Германий
d6=55,8
IV4r7=-261,8

r8=-166,72
d7=6Кремний
d8=6
5r9=114,82

r10=287,1
d9=7Кремний
d10=5
6r11=357,3

r12=189,23
d11=6Германий
D12=85
V7r13=-150,2097*)

r14=127,35
d14=4Кремний
D15=3
8r15=760,3

r16=580,8
d16=5Кремний
d17=1
9r17=160,1089**)

r18=-128,53
D18=5Кремний
*) Асферическая поверхность вида у22=-300,419х+24,879х2

**) Асферическая поверхность вида y2+x2=320,218х+29,668х2

Изменение фокусного расстояния объектива производится путем перемещения компонентов II и III. Значения переменных воздушных промежутков d2, d4 и d6 для трех значений фокусных расстояний объектива приведены в табл. 2.

Таблица 2
Фокусное расстояние объектива, ммd2, ммd4, ммd6, мм
300157,011,65,5
149,87896,131,646,4
759,0109,355,8

Из табл. 2 видно, что отношение максимального значения фокусного расстояния к минимальному М=4.

При заявляемом конструктивном исполнении длина объектива 376,15 мм и не превышает максимальное фокусное расстояние больше чем в 1,25 раза.

Передние поверхности третьей 7 и пятой 9 линз пятого компонента V выполнены асферическими для повышения качества изображения, характеризуемого, например, более высокой концентрацией энергии в пятне заданного диаметра. В табл. 3 приведены значения концентрации энергии в пятне диаметром 30 мкм для трех значений фокусных расстояний заявляемого объектива и объектива, взятого за прототип, полученные расчетным путем.

Таблица 3
ПараметрЗаявляемый объективОбъектив прототип
Фокусное расстояние, мм7515030050100200
Концентрация энергии, %878583587383

Таким образом, выполнение инфракрасного объектива с плавно изменяющимся фокусным расстоянием в соответствии с формулой заявляемых материалов позволяет обеспечить меньшие габариты при более высоком качестве изображения, чем в известных конструкциях аналогичных объективов.

1. Инфракрасный объектив с плавно изменяющимся фокусным расстоянием, содержащий последовательно расположенные неподвижный первый компонент в виде положительной выпукло-вогнутой линзы, подвижный второй компонент в виде отрицательной двояковогнутой линзы, подвижный третий компонент в виде отрицательной вогнуто-выпуклой линзы, неподвижные четвертый компонент в виде положительной вогнуто-выпуклой линзы и пятый компонент, состоящий из первой положительной выпукло-вогнутой, второй отрицательной выпукло-вогнутой, третьей отрицательной линз, четвертой линзы и пятой положительной линзы, отличающийся тем, что в пятом компоненте третья линза выполнена двояковогнутой, четвертая - отрицательной выпукло-вогнутой, а пятая - двояковыпуклой.

2. Инфракрасный объектив по п.1, отличающийся тем, что первые поверхности третьей и пятой линз пятого компонента выполнены асферическими.

3. Инфракрасный объектив по п.2, отличающийся тем, что асферическая поверхность третьей линзы пятого компонента выполнена в соответствии с уравнением

у2+z2=-2rx+(0,165627÷0,165632)rx2, где

у - ось системы координат, лежащая в плоскости меридионального сечения инфракрасного объектива;

z - ось системы координат, лежащая в плоскости сагиттального сечения инфракрасного объектива;

х - ось системы координат, совпадающая с оптической осью инфракрасного объектива;

r - радиус кривизны начальной сферы упомянутой поверхности третьей линзы пятого компонента.

4. Инфракрасный объектив по п.2, отличающийся тем, что асферическая поверхность пятой линзы пятого компонента выполнена в соответствии с уравнением у2+z2=2rx+0,1853rx2, где

у - ось системы координат, лежащая в плоскости меридионального сечения инфракрасного объектива;

z - ось системы координат, лежащая в плоскости сагиттального сечения инфракрасного объектива;

х - ось системы координат, совпадающая с оптической осью инфракрасного объектива;

r - радиус кривизны начальной сферы упомянутой поверхности пятой линзы пятого компонента.



 

Похожие патенты:

Изобретение относится к оптическому приборостроению, а именно к объективам с переменным фокусным расстоянием, и может быть использовано в системах оптической локации, оптической связи, управления и наблюдательных приборах.

Изобретение относится к объективам с переменным фокусным расстоянием и может использоваться как объектив видеокамеры с формированием изображения на ПЗС-матрице. .

Изобретение относится к оптическому приборостроению, а именно к объективам с переменным фокусным расстоянием, и может использоваться как объектив видеокамеры с формированием изображения на ПЗС-матрице.

Изобретение относится к оптическому приборостроению, в частности к телеобъективам, предназначенным для телескопических систем, работающих с различными расстояниями до наблюдаемого объекта.

Изобретение относится к оптическому приборостроению, а именно к объективам с переменным фокусным расстоянием. .

Изобретение относится к ИК оптическим системам и может быть использовано в тепловизорах. .

Изобретение относится к оптическому приборостроению и может быть использовано в различных оптических системах, работающих в среднем и дальнем ИК-диапазоне длин волн, например, в тепловизионных приборах.

Изобретение относится к области оптико-электронной техники и может быть использовано в проекционных объективах с вынесенным входным зрачком и увеличением, близким к минус единице, работающих в ИК-области спектра, например в тепловизионных приборах.

Изобретение относится к оптическому приборостроению и может быть использовано в приборах ночного видения. .

Изобретение относится к области оптического приборостроения, а именно к объективам приборов ночного видения (ПНВ), и может быть использовано для работы совместно с электронно-оптическими преобразователями (ЭОП) в ПНВ для решения задач обнаружения и опознавания объектов наблюдения при пониженной освещенности.

Объектив // 2304795
Наверх