Способ изготовления полимерных деталей трения скольжения из сверхвысокомолекулярного полиэтилена для искусственных эндопротезов



Владельцы патента RU 2300537:

Государственное образовательное учреждение высшего профессионального образования Московский Государственный медико-стоматологический университет Министерства здравоохранения Российской Федерации (МГМСУ) (RU)
Институт элементоорганических соединений им. А.Н. Несмеянова Российской Академии Наук (ИНЭОС РАН) (RU)

Способ может быть использован в деталях трения скольжения из сверхвысокомолекулярного полиэтилена для искусственных эндопротезов. При изготовлении полимерной детали исходный порошок сверхвысокомолекулярного полиэтилена предварительно подвергают термической обработке в сверхкритическом диоксиде углерода при температуре 40-140°С и удельном давлении 15-25 МПа в течение 2-4 часов. После чего порошок прессуют при 190-200°С и удельном давлении 10-60 МПа и осуществляют механическую доводку размеров полимерной детали. Причем в качестве исходного порошка используют сверхвысокомолекулярный полиэтилен с молекулярной массой (6-10,5)×106 дальтон и размерами частиц 5-250 мкм. Кроме того, состав исходного порошка может дополнительно содержать 0,05-0,15 мас.% меди, серебра или железа с размерами их частиц 10-100 нм. Полученные полимерные детали трения скольжения позволяют достичь пониженный коэффициент трения при скольжении по контртелу, выполненному из биологически инертного сплава, низкий относительный износ как материала детали эндопротеза, так и контртела - титанового сплава, повысить стабильность структуры сверхвысокомолекулярного полиэтилена, микротвердость как по всему объему изготавливаемой детали, так и на се поверхности трения скольжения, повысить краевой угол смачивания, а также свести к минимуму механическую прецизионную доводку размеров детали. 1 з.п. ф-лы.

 

Изобретение относится к области химии полимеров, а именно к способам изготовления полимерных деталей трения скольжения из сверхвысокомолекулярного полиэтилена для искусственных эндопротезов.

Известен способ изготовления полимерных деталей трения скольжения из сверхвысокомолекулярного полиэтилена для искусственных эндопротезов, включающий прессование полимерной детали из исходного порошка сверхвысокомолекулярного полиэтилена при температуре 190-200°С и удельном давлении 10-60 МПа и последующую механическую доводку размеров полимерной детали (см. Краснов А.П. и др. Трение и свойства СВМПЭ, обработанного сверхкритическим диоксидом углерода. Международный научный журнал «Трение и износ». Республика Беларусь, г.Гомель, 2003, том 24, №4, с.429-435).

Однако изготовленные известным способом полимерные детали трения скольжения из сверхвысокомолекулярного полиэтилена для искусственных эндопротезов имеют следующие недостатки:

- имеют повышенный коэффициент трения при трении скольжения по контртелу, выполненному из биологически инертного сплава, например титанового сплава марки Ti6Al4V (0,22-0,23),

- имеют недостаточно стабильную структуру поверхностного слоя детали из сверхвысокомолекулярного полиэтилена,

- имеют недостаточную микротвердость как по всему объему изготавливаемой детали, так и на ее поверхности трения скольжения (Нμ=2,5 МПа),

- имеют низкий краевой угол смачивания (60-67°),

- высокий относительный износ как материала детали эндопротеза, так и контртела - титанового сплава.

Задачей изобретения является создание способа изготовления полимерных деталей трения скольжения из сверхвысокомолекулярного полиэтилена для искусственных эндопротезов.

Техническим результатом является пониженный коэффициент трения при трении скольжения по контртелу, выполненному из биологически инертного сплава, например титанового сплава марки Ti6Al4V, низкий относительный износ как материала детали эндопротеза, так и контртела - титанового сплава, повышенная стабильность структуры сверхвысокомолекулярного полиэтилена, высокая микротвердость как по всему объему изготавливаемой детали, так и на ее поверхности трения скольжения, высокий краевой угол смачивания, а также сведение к минимуму механической прецизионной доводки размеров изготавливаемого эндопротеза за счет улучшения текучести и прессуемости исходного порошка сверхвысокомолекулярного полиэтилена.

Технический результат достигается использованием способа изготовления полимерных деталей трения скольжения из сверхвысокомолекулярного полиэтилена для искусственных эндопротезов, включающий прессование полимерной детали из исходного порошка сверхвысокомолекулярного полиэтилена при температуре 190-200°С и удельном давлении 10-60 МПа и последующую механическую доводку размеров полимерной детали, причем исходный порошок сверхвысокомолекулярного полиэтилена подвергают термической обработке в сверхкритическом диоксиде углерода при температуре 40-140°С и удельном давлении 15-25 МПа в течение 2-4 часов перед прессованием из него полимерной детали, при этом в качестве исходного порошка используют сверхвысокомолекулярный полиэтилен с молекулярной массой (6-10,5)×106 дальтон и размерами частиц 5-250 мкм. При этом в качестве исходного используют порошок сверхвысокомолекулярного полиэтилена, дополнительно содержащий 0,05-0,15 мас.% меди, серебра или железа с размерами их частиц 10-100 нм.

Среди существенных признаков, характеризующих способ изготовления полимерных деталей трения скольжения из сверхвысокомолекулярного полиэтилена для искусственных протезов, отличительными являются:

- выполнение термической обработки исходного порошка сверхвысокомолекулярного полиэтилена в сверхкритическом диоксиде углерода при температуре 40-140°С и удельном давлении 15-25 МПа в течение 2-4 часов перед прессованием из него полимерной детали,

- использование в качестве исходного порошка сверхвысокомолекулярного полиэтилена с молекулярной массой (6-10,5)×106 дальтон и размерами частиц 5-250 мкм,

- использование в качестве исходного порошка сверхвысокомолекулярного полиэтилена, дополнительно содержащего 0,05 - 0,15 мас.% меди, серебра или железа с размерами их частиц 10-100 нм.

Способ осуществляется следующим образом. Исходный порошок сверхвысокомолекулярного полиэтилена с молекулярной массой (6-10,5)×106 дальтон и размерами частиц от 5 до 250 мкм перед прессованием подвергается термической обработке в сверхкритическом диоксиде углерода при температуре 40-140°С и удельном давлении 15-25 МПа в течение 2-4 часов. При этом в качестве исходного используется также порошок сверхвысокомолекулярного полиэтилена, дополнительно содержащий 0,05-0,15 мас.% меди, серебра или железа с размерами их частиц 10-100 нм. Затем из обработанного в сверхкритическом диоксиде углерода порошка сверхвысокомолекулярного полиэтилена изготавливается прессованием в пресс-форме полимерная деталь искусственного эндопротеза при температуре 190-200°С и удельном давлении 10-60 МПа, которая проходит минимальную механическую прецизионную доводку размеров поверхности трения скольжения.

Экспериментальные и натурные испытания предложенного способа изготовления полимерных деталей трения скольжения из сверхвысокомолекулярного полиэтилена для искусственных протезов показали его высокую эффективность. Способ при своем использовании обеспечивает на изготовленной детали пониженный коэффициент трения (0,15-0,21) при трении скольжения по контртелу, выполненному из биологически инертного титанового сплава, например, марки Ti6Al4V, низкий относительный износ как материала детали эндопротеза, так и контртела - титанового сплава, повышенную стабильность структуры сверхвысокомолекулярного полиэтилена, высокую микротвердость (Нμ=3,6-3,9 МПа) как по всему объему изготавливаемой детали, так и на ее поверхности трения скольжения, высокий краевой угол смачивания (76-80°). При этом предложенный способ обеспечивает сведение к минимуму механической прецизионной доводки размеров изготавливаемого эндопротеза за счет отсутствия воздействия сверхкритического диоксида углерода на поверхность детали, улучшения текучести и прессуемости исходного порошка сверхвысокомолекулярного полиэтилена. Одновременно было установлено, что с использованием предложенного способа улучшены самосмазывающиеся свойства поверхности трения скольжения, также достигнуто повышение стерильности изготавливаемой детали трения скольжения эндопротеза, поскольку вся масса пресс-композиции предварительно подвергалась воздействию сверхкритического диоксида углерода.

Реализация предложенного способа изготовления полимерных деталей трения скольжения для искусственных эндопротезов иллюстрируется следующими практическими примерами.

Пример 1. Исходный порошок сверхвысокомолекулярного полиэтилена с молекулярной массой 6×106 дальтон и размерами частиц от 5 до 25 мкм перед прессованием подвергли термической обработке в сверхкритическом диоксиде углерода при температуре 40°С и удельном давлении 25 МПа в течение 4 часов. Затем из обработанного в сверхкритическом диоксиде углерода порошка сверхвысокомолекулярного полиэтилена изготовили прессованием в пресс-форме полимерную деталь искусственного эндопротеза при температуре 200°С и удельном давлении 10 МПа, которую затем подвергли минимальной механической прецизионной доводке размеров поверхности трения скольжения. Готовая полимерная деталь искусственного эндопротеза имеет следующие свойства: коэффициент трения при трении скольжения по контртелу, выполненному из биологически инертного титанового сплава марки Ti6Al4V, составляет 0,21, повышенная стабильность структуры сверхвысокомолекулярного полиэтилена детали обеспечила снижение относительного износа материала детали эндопротеза на 12% и контртела - титанового сплава на 10%, микротвердость детали эндопротеза составляет как по всему объему изготавливаемой детали, так и на ее поверхности трения скольжения Нμ=3,6 МПа, краевой угол смачивания равен 76°.

Пример 2. Исходный порошок сверхвысокомолекулярного полиэтилена с молекулярной массой 10,5×106 дальтон и размерами частиц от 35 до 100 мкм перед прессованием подвергли термической обработке в сверхкритическом диоксиде углерода при температуре 140°С и удельном давлении 15 МПа в течение 2 часов. Затем из обработанного в сверхкритическом диоксиде углерода порошка сверхвысокомолекулярного полиэтилена изготовили прессованием в пресс-форме полимерную деталь искусственного эндопротеза при температуре 190°С и удельном давлении 30 МПа, которую затем подвергли минимальной механической прецизионной доводке размеров поверхности трения скольжения. Готовая полимерная деталь искусственного эндопротеза имеет следующие свойства: коэффициент трения при трении скольжения по контртелу, выполненному из биологически инертного титанового сплава марки Ti6Al4V, составляет 0,15, повышенная стабильность структуры сверхвысокомолекулярного полиэтилена детали обеспечила снижение относительного износа материала детали эндопротеза на 18% и контртела - титанового сплава на 25%, микротвердость детали эндопротеза составляет как по всему объему изготавливаемой детали, так и на ее поверхности трения скольжения Нμ=3,8 МПа, краевой угол смачивания равен 80°.

Пример 3. Исходный порошок сверхвысокомолекулярного полиэтилена с молекулярной массой 10,5×106 дальтон и размерами частиц от 105 до 250 мкм и дополнительно содержащий 0,1 мас.% серебра с размерами их частиц 10-100 нм перед прессованием подвергли термической обработке в сверхкритическом двуоксиде углерода при температуре 80°С и удельном давлении 20 МПа в течение 3 часов. Затем из обработанного в сверхкритическом диоксиде углерода порошка сверхвысокомолекулярного полиэтилена изготовили прессованием в пресс-форме полимерную деталь искусственного эндопротеза при температуре 200°С и удельном давлении 60 МПа, которую затем подвергли минимальной механической прецизионной доводке размеров поверхности трения скольжения. Готовая полимерная деталь искусственного эндопротеза имеет следующие свойства: коэффициент трения при трении скольжения по контртелу, выполненному из биологически инертного титанового сплава марки Ti6Al4V, составляет 0,19, повышенная стабильность структуры сверхвысокомолекулярного полиэтилена детали обеспечила снижение относительного износа материала детали эндопротеза на 18% и контртела - титанового сплава на 24%, микротвердость детали эндопротеза составляет как по всему объему изготавливаемой детали, так и на ее поверхности трения скольжения Нμ=3,9 МПа, краевой угол смачивания равен 76°.

1. Способ изготовления полимерных деталей трения скольжения из сверхвысокомолекулярного полиэтилена для искусственных эндопротезов, включающий прессование полимерной детали из исходного порошка сверхвысокомолекулярного полиэтилена при температуре 190-200°С и удельном давлении 10-60 МПа и последующую механическую доводку размеров полимерной детали, отличающийся тем, что исходный порошок сверхвысокомолекулярного полиэтилена подвергают термической обработке в сверхкритическом диоксиде углерода при температуре 40-140°С и удельном давлении 15-25 МПа в течение 2-4 ч перед прессованием из него полимерной детали, при этом в качестве исходного порошка используют сверхвысокомолекулярный полиэтилен с молекулярной массой (6-10,5)·106 дальтон и размерами частиц 5-250 мкм.

2. Способ по п.1, отличающийся тем, что в качестве исходного используют порошок сверхвысокомолекулярного полиэтилена, дополнительно содержащий 0,05-0,15 мас.% меди, серебра или железа с размерами их частиц 10-100 нм.



 

Похожие патенты:
Изобретение относится к резинополимерным материалам, производству гидроизоляционных и кровельных материалов и может быть использовано для защиты фундаментов при строительстве зданий и сооружений, противофильтрационных экранов при сооружении геотехнических природоохранных объектов, например санитарных полигонов ТБО, рекультивации существующих свалок.

Изобретение относится к химии полимеров, а именно к композиции на основе полиэтилена, включающей полиэтилен низкого давления, стеариновую кислоту в качестве смазки и стабилизатор, где композиция в качестве стабилизатора содержит 4- -гидроксиалкилокси-4'-формилазобензол общей формулы где n=2, 3, 6, 8-10,в количестве 0,1-0,5 мас.ч.

Изобретение относится к полимерной трубе для горячих текучих сред, таких как горячая вода. .

Изобретение относится к полимерной промышленности, а именно к получению термоэластопластов на основе полиолефинов и тройного этилен-пропилен-диенового каучука, и может быть использовано для изготовления эластичных, атмосферостойких материалов в строительстве, кабельной, автомобильной, легкой промышленности, при производстве различных товаров народного потребления.
Изобретение относится к мультимодальной полимерной композиции, предназначенной для изготовления труб и к изготовленным из нее трубам. .
Изобретение относится к приготовлению композиций для наполнения кабелей, используемых в области дистанционной передачи данных. .

Изобретение относится к композиции на основе этиленпропиленового или этиленпропилендиенового каучука и сополимера этилена и октина и используется в качестве междужильного заполнителя в электрических кабелях и проводах.

Пластилин // 2252946
Изобретение относится к области производства пластилина, используемого для лепки и моделирования. .

Изобретение относится к композициям на основе полиэтилена, используемым для изоляционных покрытий проводов и кабелей, в кабельной промышленности и при производстве полимерных изделий.
Изобретение относится к конструкционному полимерному композиционному материалу антифрикционного назначения на основе высокомолекулярного полиэтилена, который может быть использован для изготовления элементов узлов трения с повышенной несущей способностью (втулки для подшипников скольжения, сепараторы подшипников качения), уплотнительных элементов пар вращательного и возвратно-поступательного перемещения.
Изобретение относится к наполненным полимерным композициям, предназначенным для изготовления крупногабаритных изделий антифрикционного назначения. .
Изобретение относится к антифрикционным материалам на основе термопластичных полимеров для изготовления подшипников скольжения, направляющих опор скольжения, работающих без смазки, со смазкой водой и технологическими жидкостями в различных отраслях техники.

Изобретение относится к полиуретановым композициям, предназначенным для изготовления износостойких изделий, обладающих антифрикционными свойствами. .

Изобретение относится к антифрикционным самоотверждающимся покрытиям на полимерном связующем, применяемым в машиностроении для нанесения на детали узлов трения, работающих без смазки.

Изобретение относится к антифрикционной композиции, содержащей политетрафторэтилен и неорганический наполнитель. .
Изобретение относится к созданию полимерного антифрикционного композиционного материала для подшипников и опор скольжения различного назначения. .
Изобретение относится к композиции для антифрикционных покрытий на направляющие скольжения и другие детали узлов трения металлорежущих станков, работающих при реверсивном движении и в режиме «пуск-остановка».
Изобретение относится к составам композиционного полимерно-волокнистого материала с антифрикционными свойствами, используемым в качестве материалов для изготовления деталей для пассажирских и грузовых вагонов железнодорожного транспорта, в частности деталей для тормозной рычажной передачи, а также для изготовления подшипников скольжения, узлов трения машин и механизмов в машиностроении, судостроении и авиастроении.

Изобретение относится к полимерному материаловедению и может быть использовано в машиностроении для изготовления триботехнических покрытий в узлах трения, в т.ч. .
Наверх